

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

AN OBJECT-ORIENTED VIEW OF BACKEND
DATABASES IN A MOBILE ENVIRONMENT FOR NAVY

AND MARINE CORPS APPLICATIONS

by

Lemuel Seth Lawrence
Kasey C. Miller

September 2006

 Thesis Advisor: Thomas Otani
 Co-Advisor: Arijit Das

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2006

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE
An Object-Oriented View of Backend Databases in a Mobile Environment for Navy
and Marine Corps Applications
6. AUTHOR(S) Lemuel S. Lawrence and Kasey C. Miller

5. FUNDING NUMBERS
N/A

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
A Database Management System (DBMS) is system software for managing a large amount of data in

secondary memory. The standard DBMS used today in both industry and the military is the Relational DBMS
(RDBMS). The RDBMS is based upon the relational paradigm, whereas modern software development technologies
that interact with the RDBMS are based upon the object-oriented paradigm. This difference in paradigms presents a
conceptual mismatch which greatly reduces programmer and developer productivity.

Additionally, wireless handheld devices have become ubiquitous both in the military and in the community
at large. These handheld devices provide a convenient means of information access. To date, the military has failed
to capitalize on the use of handheld devices as a convenient means of information access with respect to the large
amounts of information stored in its databases.

This thesis investigates various database application architectures and proposes an architecture that will not
only overcome the conceptual mismatch between the relational and object-oriented paradigms, but also allows
handheld device access to the database. A proof-of-concept prototype database application that provides handheld
device access to a military personnel database is built to show the viability of the proposed architecture.

15. NUMBER OF
PAGES

87

14. SUBJECT TERMS
Object-Relational Mismatch, Relational DBMS, 3-Tier Database Architecture, Mobile
Devices

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

AN OBJECT-ORIENTED VIEW OF BACKEND DATABASES IN A MOBILE
ENVIRONMENT FOR NAVY AND MARINE CORPS APPLICATIONS

Lemuel S. Lawrence

Lieutenant, United States Navy
B.S. (Human Resource Management), New School University, 2000

Kasey C. Miller

Captain, United States Marine Corps
B.S. (Electronic Systems Technologies), Southern Illinois University, 2002

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 2006

Authors: Lemuel Seth Lawrence

Kasey C. Miller

Approved by: Thomas W. Otani
Thesis Advisor

Das Arijit
Co-Adviser

Peter J. Denning
Chairman, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

A Database Management System (DBMS) is system software for managing a

large amount of data in secondary memory. The standard DBMS used today in both

industry and the military is the Relational DBMS (RDBMS). The RDBMS is based upon

the relational paradigm, whereas modern software development technologies that interact

with the RDBMS are based upon the object-oriented paradigm. This difference in

paradigms presents a conceptual mismatch which greatly reduces programmer and

developer productivity.

Additionally, wireless handheld devices have become ubiquitous both in the

military and in the community at large. These handheld devices provide a convenient

means of information access. To date, the military has failed to capitalize on the use of

handheld devices as a convenient means of information access with respect to the large

amounts of information stored in its databases.

This thesis investigates various database application architectures and proposes an

architecture that will not only overcome the conceptual mismatch between the relational

and object-oriented paradigms, but also allows handheld device access to the database. A

proof-of-concept prototype database application that provides handheld device access to a

military personnel database is built to show the viability of the proposed architecture.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. OBJECT-ORIENTED PROGRAMMING LANGUAGE2
B. DBMS IN THE MILITARY ...3
C. WIRELESS ENVIRONMENT FOR DATABASE APPLICATIONS5
D. ORGANIZATION ...6

II. BACKGROUND ..7
A. INTRODUCTION..7
B. TYPES OF DATABASE MANAGEMENT SYSTEMS7

1. Object-Oriented Database Management System..............................8
2. Relational Database Management System...9
3. The Object-Relational Database Management System..................10

C. TYPES OF SOFTWARE ARCHITECTURES FOR DB
APPLICATIONS ...12
1. Single-Tier ..12
2. Two-Tier ...13
3. Three-Tier...15

D. TYPES OF CLIENT SOFTWARE APPLICATIONS IN A THREE-
TIER ARCHITECTURE ..17
1. Pure Web Browser...17
2. Java Applet ...18

E. TYPES OF CLIENT CONNECTIVITY ...20
1. Wired...20
2. Wireless...21

III. PROPOSED SOLUTION..23
A. INTRODUCTION..23
B. DECISION ON DB APPLICATION SOFTWARE ARCHITECTURE..23

1. One-Tier..23
2. Two-Tier ...24
3. Three-Tier...24

C. DECISION ON BACKEND DBMS ...25
1. Object-Oriented Database Management System (OODBMS)25
2. ORDBMS..26
3. RDBMS ...26

D. DECISION ON CLIENT CONNECTIVITY..27
E. DECISION ON DATABASE VIEW..28
F. DISCUSSION ON APPLICATION LOGIC ARCHITECTURE29
G. SUMMARY ..30

IV. IMPLEMENTATION ...33
A. INTRODUCTION..33
B. APPLICATION DOMAIN ...33
C. PROTOTYPE’S THREE-TIER ARCHITECTURE34

 viii

1. Data Access Layer..34
2. Application Logic Layer..37
3. Presentation Layer...38

D. PROTOTYPE DESIGN AND ARCHITECTURE.....................................40
1. Overall Design ..41
2. Data Access Layer..42
3. Application Logic Layer..45
4. Presentation Layer...52

E. SAMPLE INTERACTION ...56
1. Command Object Creation and Transfer57
2. PCRServer Receives the Command Object58
3. DataManager and Hibernate Interaction..58
4. List of Objects Received from PostgreSQL.....................................58
5. PCRServer Receives List of Objects ..58
6. PCRClient Displays Results ..59

F. FINDINGS DURING IMPLEMENTATION..59

V. SUMMARY ..63
A. GENERAL FINDINGS AND ANALYSIS ..63

1. OR Mapper...63
2. Portability vs Bottleneck ...64
3. Overall Critique of Work..64

B. FUTURE WORK...65
1. Client Software...65
2. Map to Existing Military RDBMS..66
3. Generalized Prototype DB Application ...66

LIST OF REFERENCES..69

BIBLIOGRAPHY..71

INITIAL DISTRIBUTION LIST ...73

 ix

LIST OF FIGURES

Figure 1. DB Application Architecure ..7
Figure 2. Single-Tier Architecture. ...12
Figure 3. Two-Tier Architecture ...13
Figure 4. Three-Tier Architecture ...15
Figure 5. Basic Three-Tier Design ..17
Figure 6. Pure Web Browser Presentation Layer ..17
Figure 7. Java Applet Presentation Layer ...18
Figure 8. Full Software Application..19
Figure 9. Object-Relational Mismatch in a Three-Tier Architecture..............................29
Figure 10. Proposed Three-Tier DB Application Architecture...31
Figure 11. Prototype Three-Tier DB Application Architecture ..34
Figure 12. Prototype Entity Relationship Diagram...35
Figure 13. Application Logic Layer Implementation..38
Figure 14. Presentation Layer Implementation ...39
Figure 15. Implemented Prototype DB Application Architecture41
Figure 16. Application Logic Layer UML Diagram ...46
Figure 17. Presentation Layer UML Diagram...52
Figure 18. PCRClient GUI ..53
Figure 19. Prototype DB Application Sample Interaction ..57

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF TABLES

Table 1. Service Member Table in PostgreSQL ..45

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

A Database Management System (DBMS) is system software for managing a

large amount of data stored in secondary memory, such as a hard drive. Among the

different types of DBMSs, the de facto standard adopted and used by the vast majority of

corporate organizations worldwide today is the Relational DBMS (RDBMS). RDBMS is

built upon a solid theoretical foundation and allows the users to view and organize the

data in an intuitive and easy-to-use tabular format. Since its introduction in the 1970s,

the simplicity and theoretical elegance of the RDBMS accelerated its acceptance by

database application developers.

During the last three decades, a number of proposals were made to either improve

or replace the RDBMS, but none of them had gained any wide acceptance.

Notwithstanding the improvements, the modern RDBMS in use today and the original

RDBMS share the same core technology. This, in itself, is not a problem. However, the

peripheral technologies, such as programming languages for developing database

applications, and the computing environments, such as the wireless network and the

Internet, have changed dramatically since the early days of the RDMBS. This causes a

serious compatibility problem, and as a consequence, reduces the programmer

productivity enormously. For example, developing web-based database applications such

as the one for online shopping sites is very tedious, labor-intensive, and error-prone

because the conceptual model, or paradigm, for web programs and the one for RDBMSs

are very different. One of the primary objectives of this thesis is to study ways to fill the

conceptual gap between software development technologies and RDBMS technology.

To narrow this study to a manageable size and complexity, the focus is limited to

the database applications for the military. Different alternatives are investigated and a

database application architecture that reduces the (negative) effect of the conceptual gap

is proposed. As a part of this study, a proof-of-concept database application is developed

that implements the proposed architecture.

The remainder of the chapter provides brief introduction to the following key

technologies that are relevant to the proposed database application architecture: (1)

2

Object Oriented Programming Language, (2) DBMS in the Military, and (3) Wireless

Environment for Database Applications. The chapter then concludes with a description

of the organization of the remaining chapters of the thesis.

A. OBJECT-ORIENTED PROGRAMMING LANGUAGE
The primary software development technology in use today is the Object-Oriented

Programming Language (OOPL). OOPLs are the industry leader for developing database

applications because they provide developers with a more modern approach to

development. Traditionally, software was developed using procedural languages based

on the procedural paradigm that was linear and sequential. An OOPL is founded on the

object-oriented paradigm that represents the world in terms of objects. This section

describes the basic concepts of the OOPL and lists its advantages and disadvantages

relative to database applications.

An OOPL is centered on creating and manipulating objects and defining the

interaction between them. An object in an OOPL is an abstraction of a real world item,

tangible or intangible, and is comprised of the data and functions that manipulate that

data. The ability to define different types of objects and how those objects are

manipulated allow the developer to very closely model the real world.

The advantages of utilizing an OOPL are object reuse, encapsulation, and

inheritance. Object reuse is the ability to use the same object definition (or class) to

represent multiple instances of the object. This reuse decreases not only the number of

lines of code required to represent multiple objects, but also decreases the time necessary

for developers to quickly produce applications. Encapsulation is described as hiding the

internal workings of an object from the user of that object. For example, all OOPLs have

some method of outputting text to the screen (e.g. System.out.println(“text”) in Java),

however; the internal details of how that is accomplished are hidden from the database

application developer. Encapsulation enables easier modification of program code and

makes OOPLs simpler to learn compared to other programming languages. Additionally,

inheritance is the ability to derive a new class from an existing one by extending or

overwriting appropriate portions of the existing class. This, like reuse, decreases the

number of lines of code required to represent several related objects. For example, if

there is a class called Automobile then that class could be extended or modified to define

3

the related classes of Car and Truck. The Car and Truck classes inherit properties and

behaviors of the Automobile class such as Vehicle Identification Number, yet, extend the

Automobile class by adding additional properties or behaviors as needed. These

advantages of OOPLs provide greater flexibility and maintainability in database

application software development.

The primary disadvantage to using OOPLs in database application software is a

compatibility mismatch with the DBMS. A RDBMS is the standard approach in storing

data, but OOPL objects do not directly map to the RDBMS’s relational structure due to

the RDBMS being limited to storing primitive data types (or in some instances user

defined data types). An object, as defined earlier, is more than primitive data types; an

object has an associated behavior or functions that do not directly map to the RDBMS.

Thus, the inability to persist OOPL objects in their entirety is a compatibility mismatch

between the RDMBS and the OOPL. This thesis will investigate ways to leverage the

strength of OOPLs without incurring the burden of that compatibility mismatch.

B. DBMS IN THE MILITARY
DBMSs are heavily used in all functional areas of the military to store various

types of information ranging from personnel and medical records to combat and

intelligence data. The Department of Defense (DOD) has been storing data using

DBMSs for years, specifically the RDBMS. RDBMSs have been used in the military

because of their longstanding success in industry and are highly engrained into current

military technologies. Though the military is highly reliant upon the RDBMS it presents

limitations to both the military users and the database application developers.

From the user’s perspective on data access to the database, the DBMS is hidden

or transparent. The user interacts with the database application to store and retrieve data

with no understanding of how that data is stored, retrieved, or managed. Current military

database applications have targeted the Personal Computer (PC) as the primary means of

user interface. However, current trends in technology have progressed to small,

convenient technologies known as mobile devices, i.e., the Personal Digital Assistant

(PDA) and smart phones. Likewise, the military has recently begun procuring a growing

number of mobile devices for both tactical and non-tactical purposes. Though these

mobile devices are becoming readily available for military use, they have not been

4

utilized to access military database applications. For example, key military personnel

often carry PDAs for scheduling, email access, and storage of important information. If

that information is not resident on the PDA it is most likely in a database application.

Assuming the PDA is capable of storing all of the information requested from the

database application, how is that information displayed to the user? In the case of a

military RDBMS, the primary means of display is in the form of table(s). This in itself is

a potential limitation to the user because of the device’s limited display capability and

potential for large tables returned from a military RDBMS.

Additionally, the heavy military use of RDBMSs present limitations to the

database application developers. The database application developer must develop the

database application around the heavily used RDBMS. As previously stated, the primary

software development technology in use today is the OOPL. This combination of heavily

used RDBMSs in the military and modern software development technologies utilizing

OOPLs causes the developer to encounter the compatibilities mismatch previously

discussed. Military database application developers have three means of circumventing

this mismatch. First, the developers may undertake the tedious process of manually

mapping the data object’s contents to the RDBMS. Second, the developers may use older

software development technologies not dependent on OOPLs. However, these older

software development technologies are not always capable of cleanly modeling real

world problems when compared to OOPL software development technologies. Third,

developers may utilize a DBMS that is capable of storing objects. This compatibilities

mismatch limitation has become more and more apparent as software development

technologies continue to become more OOPL based and military database applications

continue to relay on the RDBMS.

The need to update DBMS technology in the military is imperative in order to

extend the use of software development technologies like OOPLs to database

applications both currently used in the military and those that are being developed. An

increased use of software development technologies in military database applications will

shorten the applications development time and improve maintainability and reliability.

This thesis seeks to make use of software development technologies and mobile devices

in order to improve remote data access in a military database application environment.

5

C. WIRELESS ENVIRONMENT FOR DATABASE APPLICATIONS
People use wireless devices (to include handheld devices) more and more. These

are ubiquitous devices, so it would be ideal if database information could be provided to

those devices. Further, wireless devices are becoming OOPL enabled. These OOPL

enabled wireless devices provide the database application developer a means of

incorporating wireless devices into database applications using modern development

technologies. Furthermore, the combination of OOPL capable wireless devices and the

growing demand for wireless access to data justifies the incorporation of wireless devices

in database applications. By providing database application data to wireless devices the

value of the data increases. The demand for remote data access and the emerging mobile

wireless devices that make that access possible are a direct correlation to the data’s

increase in value. Joining wireless technologies with database applications has its

advantages and disadvantages.

The primary advantage of using a wireless device, or handheld, in database

applications is information availability for the user. This increased information

availability provides access to large stores of data where and when it is needed. For

example, a growing number of military police forces have incorporated handheld wireless

devices. This provides remote access via the handheld wireless device to vast amounts of

information on any individual that military police forces may encounter. Another

advantage of incorporating wireless devices into database applications is increased

scalability. Adding wireless devices to an existing network requires little to no additional

infrastructure, yet greatly enhances the number of potential users. The increase in both

scalability and availability provide a means to improve user productivity.

Though wireless devices provide advantages, there are some disadvantages. In

addition to the limitations of mobile devices previously mentioned, there is a connection

difference between a wired and wireless device. The wireless connection of a handheld

device provides concerns in the way of reliability and security. Reliability is of concern

because the wireless connection is more susceptible to interference than a wired

connection. Similarly, data security is a concern for corporations of all sizes. The

introduction of wireless access and transmission of that data only enhances this concern

further due to removing the traditional network security perimeter. Though there are

6

disadvantages to wireless devices in database applications, there is an undeniable demand

for remote access to data. This thesis will further investigate the use of wireless devices

in database applications.

D. ORGANIZATION
The organization of this thesis is as follows: Chapter II provides the background

on database application designs including a discussion of types of DBMS, types of

software architecture for database applications, types of software client applications, and

types of client connectivity. Chapter III provides decisions on the database application

software architecture, the type of backend DBMS, client connectivity, and on type of

database view. The chapter then concludes with proposed database application software

architecture. Chapter IV opens with a discussion of the application domain and provides

an introduction to the proof of concept. The chapter then provides a description of the

prototype application developed as a result of this thesis. Finally, the chapter concludes

with findings during implementation. Chapter V provides an evaluation of the

implemented solution with respect to the conceptual gap posed by this thesis. Further,

this chapter provides a discussion of the general findings and possible extensions on the

existing implementation and recommendations for follow-on research.

7

II. BACKGROUND

A. INTRODUCTION
In this chapter, background information will be provided in the following four

areas: (1) Types of Database Management Systems, (2) Types of Software Architectures

for Database (DB) Applications, (3) Types of Software Client Applications in a Three-

Tier Architecture, and (4) Types of Client Connectivity. A discussion of each area will

include a general introduction to the concept followed by a short discussion of the pros

and cons relative to each individual area of concern.

B. TYPES OF DATABASE MANAGEMENT SYSTEMS

Figure 1. DB Application Architecure

A DB application as shown in Figure 1 is software that manages information

stored in secondary memory devices. DB applications consist of three major

components, the user interface, the application logic, and data storage. DB applications

can be written completely by using programming languages such as C, C++, or Java.

However, a typical DB application will utilize system software called a Database

Management System (DBMS) to handle the tedious task of data operations, updates,

retrievals, and deletions. Figure 1 above shows that the DB application hides the DBMS

and the DB from the user regardless of the type of DBMS that the DB application

DB APPLICATION

DBMS

DB
-relational
-object
-other

8

implements. The DBMS is software that utilizes a DB (this DB can be relational, object-

oriented, etc) to store data and provide a means of accessing that data in a standard

format such as Structured Query Language (SQL). The DBMS is utilized by the DB

application to store and access data respective to the specific DB application’s need, and

in doing so provides some degree of transparency and independence as to how the data is

actually stored. Currently, there are three prominent DBMSs; (1) the object-oriented

DBMS, (2) the relational DBMS, and (3) the object-relational DBMS.

1. Object-Oriented Database Management System

Object-Oriented Database Management Systems (OODBMSs) provide persistent

storage of objects. These objects can consist of primitive data types or other objects

which may in turn consist of primitive data types or further objects and so on.

Additionally, these objects may be defined via an object-oriented programming language

such as Java, C++, or Smalltalk, but a true OODBMS provides persistent storage of

objects independent of specific programming languages. OODBMSs are generally used

in applications where the object-centric point of view is appropriate. Further, an

OODBMS is best suited when user sessions consist of retrieving at most a few objects

and then manipulating or processing some portion of those objects for an arbitrary period

of time. Objects can be of arbitrary size and complexity so applications that do not

require extensive queries yet have complex objects work well with OODBMSs.

There are limitations when implementing the OODBMS solution in DB

applications. OODBMSs have not gained popular support in industry today. The lack of

industry support has led to very few OODBMS developers and vendors to produce robust

and applicable OODBMSs. Additionally, the traditional Relational DB Management

System (RDBMS) is suited for nearly all industry requirements and OODBMSs have

only caught a very small niche of the market to include computer-aided design (CAD)

and telecommunications. The OODBMS’s small market share is most evident when

comparing the 1999 sales revenue where object-oriented systems had only $211 million

in sales where the combined sales of the relational and object-relational DBs had a

staggering $11.1 billion in sales by comparison (Leavitt Communications, 2000).

Further, OODBMS applications do not fit well in query extensive environments due to

the potential for large and complex objects to be stored in the DBMS. A complex query

9

where several large objects are returned is a costly operation (in terms of time and

efficiency) and therefore OODBMSs are not an ideal solution in applications that require

several queries or an environment that requires a single query to return several related

objects (Ramakrishnan & Gehrke, 2003). To further complicate design and

implementation, there is currently no established theoretical definition of the object-

oriented data model (Bertino & Martino, 1993).

Overall, the OODBMS fits well in specific problem domains that do not require

extensive queries. However, if a DB application must convert its existing data (most

likely in a RDBMS) in order to make use of an OODBMS then an OODBMS is not a

practical solution. As Bertino and Martino more eloquently stated,

Realistically, a number of factors has to be taken into account: it is
impossible to abandon, from one day to the next, the ‘old’ DBMS, due to
the obvious effects on a company’s operating continuity, the shortage of
suitably qualified staff, the lack of real ‘guarantees’ that it will be possible
to reuse new data and applications environments already created, and
ultimately to preserve existing investment intact.

(Bertino & Martino, 1993)

These factors are reason enough to sway away from OODBMSs as an

implementing solution in instances of trying to utilize existing databases or to upgrade an

existing DB application to meet the object-oriented trend in modern technologies. The

OODBMS is a viable option in one of the niche environments or in an object-oriented

application that does not rely on any existing, legacy, DBMSs. Furthermore, the

OODBMS is a prime solution for implementing a DBMS from the ground up.

2. Relational Database Management System

Originally proposed in 1970 by Edgar Codd the relational model is now present in

all ranges of systems from Personal Computers (PCs) to large server applications and is

clearly the dominant means of storing all types of data. The dominance of the relational

model is in part due to the model’s mathematical foundation and relatively longstanding

use, passing the test of time (Elmasri & Navathe, 2004). The relational model is well

suited to store most types of data and works well if the relationships between data are not

too complex. A relation in a Relational Database Management System (RDBMS) is

10

stored in the form of tables consisting of rows and columns of primitive data types.

These rows and columns represent the data itself or the relationship between tables that

can be rather simple or very extensive allowing the RDBMS a wide range of scalability

relative to the amount and types of data it contains. When compared to other database

technologies the RDBMS is much more mature and is clearly the dominant persistence

mechanism on the market today. Additionally, the RDBMS has several well established

vendors, and existing standards such as SQL and Java Database Connector (JDBC)

(Ambler, 2006). For these reasons the RDBMS is well suited for nearly any DB

application or task in potentially any problem domain related to data storage and access.

Though the RDMBS will clearly work in nearly all problem domains, it has

inherent drawbacks. First, the RDBMS will not explicitly allow for the storage of a user

defined data type or object. Second, in the case of large databases, queries and searches

become slow and computationally intensive. Lastly, the relational model does not map

well to all real world applications such as CAD applications. The inability to map well to

certain applications is due to the RDBMS being somewhat two-dimensional, as each

table only has two dimensions, namely the row and column.

The RDBMS is clearly a viable option in any number of problem domains due to

its extensive range of applicability and strong mathematical foundation. The RDBMS

clearly has many advantages but exhibits drawbacks as well, such as strong coupling and

an inability to map to all real world applications as already discussed. Further, the

RDBMS has a lack of ability to relate directly with the modern object-oriented

programming paradigm languages such as Java. These pros and cons must be weighed

but an obvious and unavoidable fact is that RDBMSs are everywhere and in most cases

unavoidable.

3. The Object-Relational Database Management System

The object-relational database concept has been heralded as the next great wave in

DB technologies by Michael Stonebraker, Chief Technology Officer at Informix(Leavitt

Communications, 2000). A simple description of the object-relational concept is a

relational DB that is capable of storing not only primitive data types, but also objects.

This next great wave is founded by Stonebraker’s claims that Object-Relational DBMSs

11

(ORDBMSs) have four essential properties: (1) support for base type extensions in an

SQL context (provides for user defined data types that are capable of utilizing the already

present primitive data types and a means of querying them via an SQL type standard), (2)

support for complex objects in an SQL context (provides a means of querying objects that

contain other objects or lists of objects that in turn are comprised of primitive data types

or other objects, again via an SQL type standard), (3) support for inheritance in an SQL

context (provides a means of querying objects that expand/extend another object’s basic

structure, to include functions and data, via an SQL type standard), and (4) support for a

production rule system (a production rule here is a simple “on event - do action” rule

utilized to maintain the integrity of the DB generally referred to as a trigger in traditional

DBs) (StoneBraker & Moore, 1996). In theory these properties combine the longstanding

support and existing standards that the RDBMS has gained over time with the desired

object-oriented design principles (such as extensible data types, function and data

inheritance, etc).

ORDBMSs add object oriented features to the relational concept and provide the

ability to navigate objects in addition to a RDBMS’s ability to join tables that now

potentially contain objects. By implementing both objects and relations in a DBMS, an

ORDBMS can execute complex analytical and data manipulation operations to provide

user defined functions on the stored data. ORDBMSs also support the robust transaction

and data-management features of a RDBMS while at the same time offer a limited form

of the flexibility provided by the object-oriented design concept from the OODBMS.

The relational foundation of the ORDBMS permits tabular structures, Data Definition

Languages (DDLs), and data that is accessible via familiar approaches such as SQL,

JDBC, and potentially user defined call interfaces via the object-oriented programming

paradigm(Ambler, 2006).

The ORDBMS is not without its disadvantages. First, ORDBMSs do not provide

a means of efficient access to its data. Even though ORDBMSs are capable of storing

complex data types they are inefficient in their retrieval of such data due to that data

complexity. The complex data types are often queried via an Object Query Language

(OQL) that is not mathematical in its foundation and therefore is very difficult to

optimize in comparison to SQL. Second, combining the relationships present in a

12

RDBMS and relationships present in an object or between objects seems logical. These

two types of relationships (RDBMS and object) do not necessarily complement each

other. For example, objects can be related via other objects; where as, the traditional

relation in a RDBMS would require another table (or relation) to express this same

relationship. The ORDBMS potentially represents the same relationship more than once;

internal to the objects and in the tabular structure of the ORDBMS. Thus, the ORDBMS

potentially has redundant representations of the same relationship. These two different

methods of representing a relationship (RDBMS and object) lead to the concept of an

Object Relational Mismatch (or Impedence Mismatch) which is further described in

Chapter III.

C. TYPES OF SOFTWARE ARCHITECTURES FOR DB APPLICATIONS
DB application architectures consist of one of three possibilities, (1) Single-Tier,

(2) Two-Tier, or (3) Three-Tier. The DB application has three distinct software segments

or layers; specifically, these are the (1) Presentation, (2) Business or Application Logic,

and (3) Data Access layers. The manner in which these three layers are composed

differentiates the three DB architectures. Each of these architectures will be discussed

and their advantages and disadvantages explored further.

1. Single-Tier

Figure 2. Single-Tier Architecture.

User Interface

Application Logic

Data Access

13

With the Single-Tier architecture, as illustrated in Figure 2, a single piece of

software includes the user interface (presentation layer), the application logic layer

(business logic), and the data access layer. Traditionally, this application would run on

the mainframe and users would access it on a mainframe itself or through dumb terminals

that could only perform data input and display functionality (Ramakrishnan & Gehrke,

2003). This traditional approach is the single-tier architecture because the presentation

software, the application logic software, and the data access software are all resident on a

single machine. A simplistic example of a modern single-tier DB application would be a

Microsoft Access DBMS that resides on a single Personal Computer (PC) and is accessed

only from that PC.

This simple architecture has several advantages. The single-tier architecture is

easily and centrally maintained by a single or very few system administrators. It also

captures all layers of complexity within a single point for ease of access to the data for

both the end user and the developer. Further, this simple architecture allows for timely

development of relatively serious and robust applications without incurring the enormous

effort and long development cycles that are often the norm for mainframe development.

The most serious disadvantage of the single-tier architecture is the lack of

scalability. Traditionally, the single-tier architecture is composed of a single DB and

provides access to a single user. Thus, by definition the single-tier architecture does not

scale to a large number of end users.

2. Two-Tier

Figure 3. Two-Tier Architecture

User Interface 1

Application Logic
&

Data Access DBMS

User Interface 2

...

User Interface N

Network

14

Figure 3 above shows a two-tier architecture that separates the client (User

Interface) from the database server (application logic and data access). The two-tier

architecture is also commonly referred to as the client-server architecture. The means of

separating the complexity between the server and the client can vary. Traditionally, the

user interface is merely a GUI program whereas the application logic (often referred to as

business logic) and data access layers are combined and maintained via an additional and

separate program. This particular separation of complexity is known as a thin client.

Conversely, the other means of separating complexity is where the business logic and

GUI are contained in a single program and the data access layer of the architecture is

contained in a separate program. This variation of the two-tier architecture is commonly

referred to as a thick client.

The two-tier software architecture has a few important advantages. The two-tier

architecture DB application is quickly developed using modern tools such as Microsoft

Visual Basic or Sybase Powerbuilder. Moreover, it allows for separation of complexity

by separating the presentation issues from the data management issues to allow for ease

of maintaining the software and increase the scalability of the system to multiple end

users utilizing either a thin or thick client. The two-tier architecture’s largest advantage

over the single-tier architecture is the increased scalability.

There are a few inherent drawbacks specific to the thick client compared to the

thin client. The first drawback of the thick client is the lack of a central location to

update and maintain the business logic of the DB application since the business logic is

running on multiple clients. Second, the DB must rely on the client to leave the data in a

safe or acceptable state following any transactions, thus providing greater possibility of

error and more complexity. Lastly, thick clients do not scale well with a large number of

clients due to potentially large data transfers (queries) causing a potential bottleneck.

Further, the scalability is compounded when multiple databases are considered. For each

client there can be N connections open with the server where N is the number of

databases which clearly does not scale well with multiple clients and DBs in the DB

application as a whole.

15

The drawbacks of the thick client two-tier architecture have led to the primary use

of thin to extremely thin clients. Today, these thin clients can consist of merely a web

browser that connects to a DB (ultra-thin client) or a user defined application such as a

Java application (Ramakrishnan & Gehrke, 2003). Clearly, the two-tier architecture is

more scalable to more problem domains than the single-tier architecture, however; the

scalability is still a concern for widespread use depending on the number of users, the

number of databases, and the amount of data transferred on average per transaction

between the server and the client.

3. Three-Tier

Figure 4. Three-Tier Architecture

Like the two-tier architecture, the three-tier architecture separates complexity.

However, the three-tier architecture separates the application logic from the data

management issues as shown in Figure 4 above. According to Ramakrishnan’s and

Gehrke’s Database Management System, this architecture allows for three distinct tiers or

layers: The Presentation Tier (User Interface), the Middle Tier (application logic layer),

and finally the Data Management Tier (data access layer). The Presentation Tier

provides the users of the DB application with an interface to make requests (query),

provide input, and to see results of those inputs/requests. This specific tier is either a full

software application or a web based application in most of today’s DB applications. The

Middle Tier executes the application logic and is generally programmed in a language

such as Java or C++. Lastly, the Data Management Tier is the data access portion

User Interface 1

Application
Logic DBMS

User Interface 2

...

User Interface N

Network
Data Access

16

normally implemented by using a DBMS, but the use of a DBMS is not a requirement.

These tiers have some means of communicating via a standard or customized protocol.

Specifically, the means of communication between the presentation layer and the

application layer is normally web based, and therefore, Hyper Text Transfer Protocol

(HTTP) or another well defined protocol is used. Likewise, the application and data

management layers communicate via a standard interface such as Java Database

Connector (JDBC).

The three-tier architecture has five advantages: (1) Heterogenous System, (2)

Thin Clients, (3) Integrated Data Access, (4) Scalability to Many Clients, and (5)

Software Development Benefits. A Heterogeneous System allows the applications to

utilize the strengths of different hardware platforms at their respective tiers. Secondly,

Thin Clients allow for the presentation layer to be handled on as light a client as possible

and not have to maintain the integrity of the data on the client side making this

architecture much more scalable than the one-tier or the two-tier architecture. Third,

Integrated Data Access allows for all the accesses to the data layer to be handled at the

middle tier further separating complexity. Fourth, the entire three-tier architecture is

extremely scalable to multiple clients. This scalability is enabled by both the thin client

concept and the ability to place multiple systems (here systems refers to hardware

systems) at any potential bottleneck. Lastly, the three-tier architecture has inherent

software development benefits due to being logically split up into layers that correspond

to presentation, business logic, and data management. Further, the three-tier architecture

allows reusable software components at each layer and the use of well defined protocols

or APIs allowing for a loose coupling between components.

There are a few drawbacks with the three-tier architecture. First, the three-tier

architecture is more complex and therefore is more prone to errors and mistakes in

development, however; most of this is mitigated by using defined APIs or protocols

between the layers of the architecture. Second, the DB application must have some

notion of state across the layers. Each layer must be aware of the state of each bordering

layer in order to allow for efficient and correct access. Again, this is mitigated via APIs

and well known protocols. Lastly, though the DB application is broken up and logically

17

allows for the use of the respective software or hardware components it potentially

requires much more than a single or small group of administrators to maintain it

(Ramakrishnan & Gehrke, 2003).

D. TYPES OF CLIENT SOFTWARE APPLICATIONS IN A THREE-TIER
ARCHITECTURE

Figure 5. Basic Three-Tier Design

As Figure 5 above shows, the presentation layer is the layer that interfaces with

the user and it is therefore vital that the correct implementation of this layer be utilized

for both functionality and aesthetics. There are three distinct methods of presenting data

at the presentation layer in a three-tier architecture DB application, (1) a pure web

browser, (2) a Java applet, and (3) a full software application. Each of these approaches

will be explored further and the advantages and disadvantages of each discussed.

1. Pure Web Browser

Figure 6. Pure Web Browser Presentation Layer

The true web browser client, as shown in Figure 6, provides a simple yet

potentially robust means of displaying results while requiring little to no data processing

HTML
Response

Web

Browser

Business

Logic
... User

HTTP
Request

User
Presentation Layer Business Logic Data Access

18

by the client (all it does is display data to a screen). This provides for scalability and

decreased maintenance in the client software. Further, this approach uses a well known

protocol, Hyper Text Transfer Protocol (HTTP), to request the data providing for an

overall accepted and well defined communications media. The additional benefit of

utilizing the well defined protocol approach to displaying data, namely Hyper Text

Markup Language (HTML), is that the only items being transferred between the

presentation layer (the client) and the middle layer is HTML data that can be viewed in

any compatible browser, i.e. Internet Explorer or Mozilla. The use of an existing browser

provides the advantage of requiring no additional software on the part of the client.

Further, the client has no need for insight into the middle tier or the data management tier

to serve its presentation function thus achieving the separation of concerns in the

application’s three tier architecture.

The web browser approach does have one severe limitation. The web browser is

limited on its ability to display complex data because it is restricted to use of simple

HTML forms, javascripts, Java Server Pages (JSPs), etc. Though this is a somewhat

robust means of displaying data it is still lacking the true display power of programming

language. The web browser is insufficient if the client is required to display complex

data.

2. Java Applet

Figure 7. Java Applet Presentation Layer

The second method of presenting data to the user is the Java Applet as shown in

Figure 7 above. The Java Applet ist defined by Microsoft online as:

…a Java class that is loaded and is run by a Java program that is already
running, such as a Web browser or an applet viewer. Java applets can be

User
List of
Objects

Web Browser
Business

Logic
...

Remote
Call

Java
Applet

19

downloaded and run by any Web browser that can interpret Java, such as
Microsoft Internet Explorer, Netscape Navigator, and HotJava. Java
applets are frequently used to add multimedia effects and interactivity to
Web pages, such as background music, real-time video displays,
animations, calculators, and interactive games. Applets can be activated
automatically when a user views a page, or they may require some action
on the part of the user, such as clicking an icon in the Web page.

(Microsoft TechNet, 2005)

The Java Applet approach to displaying data adds the robustness of the programming

language to the web browser by embedding the program into the web browser itself.

Further, it does this without adding the complexity to the software client. The Java

Applet itself is maintained by the business logic layer and retrieved when the data is to be

accessed via the browsers interface to the applet. Since the program is retrieved from the

business logic layer vice the software client, the software maintenance required is

reduced due to the applet only being permanently resident in one location.

The largest drawback to the Java Applet is that it has limited access to the client’s

hardware resources. This limitation is a necessary security feature that limits the ability

of the Applet to store the data on the client hardware. Traditional software resident on

the client hardware does not suffer from this limitation. Therefore, in the case that

maximum data access and access to client system resources are required, a full

application must be employed.

3. Full Software Application

Figure 8. Full Software Application

To gain the full program complexity and the display capabilities that go with it,

the full software application, as shown in Figure 8 above, is the primary means utilized

Request

Response

Business

Logic
... User

Software
Application

20

today. The application is not limited by the security aspects as the Java Applet is and

therefore, it will have full access to the client’s hardware resources (or some user defined

level of access). The user defined application concept has benefits, but there are a few

drawbacks.

The first drawback is that software maintenance becomes much more difficult

compared to the other approaches because that software resides on all hardware clients.

This makes software maintenance or modifying the application difficult at best because

all hardware clients that maintain a version of the software must be updated. Lastly the

full software application approach is much more computationally dependent upon the

client hardware since the program is being run directly on the client machine. This is a

very attractive means of viewing backend databases due to having potentially full view

into the data portion of the architecture. However, this could also serve as a hindrance

due to potential maintenance problems in a large scale deployment type of environment

where multiple clients are unavoidable.

E. TYPES OF CLIENT CONNECTIVITY
The way that the presentation layer (or software client) interacts with the rest of

the architecture can be either hardwired or wireless. Each of these two means of

connectivity between the presentation layer and the rest of the system has its benefits and

drawbacks. Here, those benefits and drawbacks are briefly discussed in the context of

DBMS architectures.

1. Wired

A wired client provides many benefits. First, the clients are all locally

administered and maintained. Second, the wired client provides faster access to data than

a wireless client. This becomes apparent in the case of large amounts of data being

transmitted between the client and server where the wireless client would suffer by

comparison. Third, the wired client provides for increased control over the security of

data. This is largely in part due to the ability to monitor all access points that are defined

by hardware (via a well defined perimeter) in the architecture whereas a wireless client

could potentially access the data from anywhere. Lastly, the wired client permits the

utilization of existing infrastructure. This makes possible efficient and potentially more

cost effective solutions to connectivity.

21

The wired client also has several drawbacks. The largest and most apparent

drawback is mobility. Wired clients are severely limited when it comes to mobile access

to the application. This potentially restricts users’ ability to access data in a timely

fashion as they must be physically connected to a data point. Another disadvantage of

wired clients is that they either require pre-existing infrastructure or they become rather

costly to implement and build from scratch depending on the system infrastructure

requirements (i.e. transmission media requirements such as fiber vs. twisted pair). These

drawbacks lead to the requirement for either a truly wireless application or a combination

of wired and wireless clients allowing for the benefits of the wired client to those users it

is available for and the mobility to the clients that require it.

2. Wireless

The wireless client is a necessity in an environment that requires mobility;

however, there are benefits to the wireless client beyond mobility. Wireless clients allow

for a quick and easy way of building the system from scratch; all that is required is a

server with a Wireless Access Point (WAP). The use of a WAP permits quick and

potentially cost effective deployment of a DB application. Further, the wireless client

offers a more convenient means of accessing information stored in a DB application. Yet

another benefit is the simple fact that wireless access to data is in demand in nearly all

types of systems and applications. Thus, the wireless client meets that demand by

providing the coveted mobility and usability to the user but it is not without costs.

The costs of wireless access are not necessarily monetary; they are in the realm of

the security of the data. The wireless environment, unlike the wired environment, has a

vague and ever evolving notion of perimeter. This vague perimeter makes the security of

the system a challenge due to ability to add access points (known as rogue access points)

that are unknown to the system administrator. Further, the wireless environment permits

attackers to intercept data in transit easier than in the wired environment. To combat this,

the data suffers the overhead penalty of encryption. The encryption solution itself is not a

true answer to data protection because it also has vulnerabilities which introduce the

wireless computing security paradox that will not be further discussed. Lastly, mobile

devices are somewhat limited in their computing power (though this is rapidly changing).

22

THIS PAGE INTENTIONALLY LEFT BLANK

23

III. PROPOSED SOLUTION

A. INTRODUCTION
In this chapter, a database (DB) application architecture capable of bridging the

conceptual gap between object-oriented software development technologies and

Relational Database Management Systems (RDMBSs) discussed in Chapter I will be

proposed. This proposed DB architecture will be arrived at by first making decisions on

the key elements discussed in Chapter II in the context of U.S. military DB applications.

Decisions will be provided in the following areas: (1) DB Application Software

Architecture, (2) Backend DBMS, (3) Client Connectivity, (4) Database View, and (5)

Application Logic Architecture. Based on each of these decisions an overall architecture

will be proposed providing a basis for Chapter IV’s proof of concept implementation.

B. DECISION ON DB APPLICATION SOFTWARE ARCHITECTURE
The current U.S. military environment demands three things from DB

applications: (1) high scalability (support for several end users), (2) support for several

DBs within the application, and (3) provide capability to utilize mobile devices. Each of

the three DB application software architectures introduced in Chapter II will be discussed

in regards to these three demands.

1. One-Tier
The one-tier DB application software architecture, as discussed in Chapter II,

does not scale well by definition. The one-tier DB application software architecture will

support simultaneous access to multiple DBs. To support several DBs the one-tier DB

application software architecture becomes very complex due to requiring an interface of

some kind with each individual DB. This complexity makes software maintenance

difficult in the case of multiple DBs and can also make adding more DBs in the future

difficult. Furthermore, the single-tier DB application software architecture is not feasible

in regards to mobile devices. Current mobile devices are limited in memory, secondary

storage capacity, and processing power. Additionally, most DBs used by the military

tend to be rather large. These mobile device limitations combined with the use of large

DBs make the one-tier DB application software architecture infeasible.

24

If the mentioned mobile device limitations are overcome at some point in the

future there is still an incompatibility with regards to DBs and the one-tier architecture

for multiple users. This incompatibility is in the arena of data change management. Data

change management is encountered when a user updates the data on his/her application,

yet the rest of the users fail to get the change in a timely manner resulting in inconsistent

information among users. The concern of data change management is an unavoidable

deterrence to scalability, and as already mentioned prevents the one-tier architecture from

being compatible in the military environment.

2. Two-Tier
Unlike the one-tier architecture, the two-tier DB application software architecture

scales to many users and supports several DBs. Though it scales to many users, it fails to

do so, well, in all cases. The two-tier architecture does not scale well in the case of a

large number of users and databases in the same application. In the two-tier architecture

if there are multiple users (M) and many DBs (N), then there are potentially M*N

sessions open on the server. This M*N relationship is a potential bottleneck in the two-

tier architecture and is of concern as two of the three requirements for a military DB

application are support for multiple users and multiple DBs. Additionally, the two-tier

architecture will support mobile devices, however; this support is limited in the military

environment. The already discussed mobile device limitations combined with the

increasing demand for mobile device applications in the military potentially over-tax the

mobile device. This over taxation of mobile devices has a potential to restrict the

relevance of current mobile devices to the military.

The two-tier DB application software architecture is a viable option in the military

DB application because it is scalable, supports multiple users, and supports mobile

devices. However, the two-tier architecture still has limitations in a military

environment; specifically, the potential bottleneck and potential for application overload

on mobile devices. These potential limitations make the two-tier architecture feasible yet

still present undesirable consequences.

3. Three-Tier
The three-tier DB application software architecture is scalable and capable of

supporting many DBs. The scalability of the three-tier architecture does not incur a

25

bottleneck because this architecture does not have its application logic and data access

combined at one layer. The three-tier architecture separates each of these layers allowing

additional hardware to be placed at any potential bottlenecks, however; the three-tier

architecture is more difficult to develop. The separation of layers decreases the burden

on any one layer and allows more efficient access. Additionally, the three-tier

architecture will support many DBs for this same reason. Furthermore, the three-tier

architecture is capable of supporting mobile devices, however; the same concerns apply

to mobile devices in three-tier architectures as those for the two-tier architecture.

The three-tier architecture’s logical separation of functionality, as described in

Chapter II, and its ability to support the necessary demands in a military environment

make it a robust and capable architecture. Thus, since the three-tier architecture is highly

scalable, capable of supporting several DBs, and mobile device capable it is the clear

solution in military DB applications.

C. DECISION ON BACKEND DBMS
This section will provide an analysis of each of the DBMSs discussed in Chapter

II arriving at a decision on what type of DBMS is the logical choice in a military

environment. The current military environment requires three distinct qualities from a

DBMS; product availability, product support, and low data migration cost (from the

RDBMSs that currently exist in the vast majority of military DB applications). These

three qualities will be considered for each type of DBMS.

1. Object-Oriented Database Management System (OODBMS)
Concerning product availability, the OODBMS is the least available of all

DBMSs discussed in Chapter II. This is due largely in part to it being a relatively new

DB technology. As with any new technology there is reluctance on the part of the

software development industry to embrace such technologies. This reluctance limits the

demand for the technology and therefore the number of vendors and related product

support.

Migrating, or converting, the heavily used RDBMS data to OODBMS data is

costly. First, the cost of training system administrators in the military, or any other size

comparable organization, is a large investment and should be heavily weighted when

considering converting to new technologies such as the OODBMS. Additionally,

26

migration costs are compounded by the fact that the data has to be converted from a

relational format to an object-oriented format. This conversion incurs not only a

monetary cost but a time cost as well. The time cost is not limited to only the DB data.

In most cases the DB applications that rely upon the DBMS must be converted as well in

order to recognize data from an OODBMS vice a RDBMS. Thus, the lack of product

support and product availability in conjunction with the high data migration cost make

the OODBMS unsuitable for the military environment.

2. ORDBMS
The ORDBMS is gaining momentum in industry as RDBMS vendors see it as a

way of combining concepts from the OODBMS and the RDBMS as discussed in Chapter

II. This increase in momentum is in part due to the SQL like standard that is supported in

the ORDBMS combined with its much desired ability to handle the modern object.

However, the vast majority of the DBMS market is relational in nature and dominated by

the RDBMS leaving the ORDBMS lagging in terms of product support and product

availability, though; more supported and available than the OODBMS.

The data migration cost of converting RDBMS data to ORDBMS data is not as

high as that of the OODBMS, yet it is still of concern. The ORDBMS is capable of

storing primitive data types and therefore does not incur the time cost of converting all of

its data, however; the data still must be written or copied into the ORDBMS from the

original military RDBMS. Like in the case of OODBMS, the cost of training

administrators to use the new technology must be considered, though the cost is not as

drastic when compared to OODBMSs. Further, if the applications that interact with the

ORDBMS are to be fully capable of utilizing ORDBMS features, such as object

compatibility, then they too must be updated. This high data migration cost combined

with the lack of product availability and product support make the ORDBMS an

inappropriate choice for military DB applications.

3. RDBMS
The RDBMS is the dominant DBMS on the market today, as discussed in Chapter

I, and the standard to which other DBMSs are compared. This dominance combined with

the longstanding use and availability of the RDBMS provides for a widely available

product from many vendors that is heavily supported in industry. Further, this

27

dominance is quite clear in the military where nearly all DB applications are reliant upon

the RDBMS. Additionally, the military already has existing relationships with various

RDBMS vendors regarding support for their respective products.

The data migration cost in the case of RDBMSs in the military is nonexistent in

most cases as the data already resides in an RDBMS. However, if there is an upgraded

RDBMS available then the time of migrating data from the old RDBMS to the new is of

some concern, yet unavoidable. Therefore, the high availability and support in

conjunction with the low to nonexistent data migration cost establish the RDBMS as the

logical choice for DBMSs in military DB applications.

D. DECISION ON CLIENT CONNECTIVITY
As discussed in Chapter II, both wired and wireless environments have their

merits and shortcomings. The military is increasingly becoming mobile device capable

regardless of any shortcomings. This increased use of mobile devices is driving the

military toward a wireless capable environment in order to support the high demand for

remote access. The compelling force toward a wireless environment in the military is

ease of access to information. A key example of this in the military is in the case of a

Duty Officer. Each branch of the military has some form of a Duty Officer who is on call

and traditionally carried a pager as a means of contact. As time and technology

progressed, the pager eventually gave way to the cell phone. Further, as the lines

between cell phone technologies and other handheld device technologies (e.g. PDAs)

become increasingly blurred so does the Duty Officer’s ability to access data remotely.

The military sees that the Duty officer having a means to reach out to any relevant source

of data via his mobile handheld device as an emerging necessity.

The desire for a wireless DB environment in the military is driven by three

primary factors. First, the mobile devices are already present and in use as a part of every

day military operations. Second, the mobile devices require wireless access in order to

provide time relevant information to the user. Third, the demand for time relevant

information to where it is needed is a growing requirement. These three factors are key

enablers to military personnel because they significantly enhance productivity and the

ability to make sound decisions.

28

E. DECISION ON DATABASE VIEW
The modern object-oriented approach to software development provides software

developers with all the benefits of Object-Oriented Programming Languages (OOPLs) as

discussed in Chapter I. These benefits allow the developers to use objects to closely

model real world items. Further, allowing the software developers to view data in the DB

as objects decreases the work required by the software development professional. This

decrease in work is derived from the lack of data conversion. Data conversion is not

required prior to being used by the developer because the data is already in object format.

In the case of the military which is heavily reliant upon the RDBMS, it is essential that an

object-oriented view of the DBMS be provided to the software developers in order to

efficiently make use of modern software development technologies.

From a user’s perspective, by providing the software developers an object-

oriented view of the DB it allows for a more rapid development of applications providing

useful software in a more timely manner. Additionally, by providing the user an object-

oriented view of the backend relational DB they are not required to be familiar with the

relational DB operations (such as table joins and queries) and structures. Specifically,

this object-oriented view of the database provides the user with a more intuitive means of

interacting with the information that is not restricted to the relational format consisting of

tables with rows and columns.

An object-oriented view of backend databases is beneficial to both the user and

the developer as previously discussed. These benefits also carry over to the military in

general. By providing an object-oriented view of its backend databases the military can

incorporate modern software into its existing DB applications with ease. Further, this can

lead to savings in the form of both development time and cost. These savings and

benefits could potentially enhance military DB services in a broad range of areas to

include payrolls, muster, combat information, and pension records.

29

F. DISCUSSION ON APPLICATION LOGIC ARCHITECTURE

Figure 9. Object-Relational Mismatch in a Three-Tier Architecture

As previously concluded, a three-tier DB application is best suited in a military

environment. Additionally, the RDBMS is the logical choice of implementing the data

access layer of that three-tier architecture, yet an object-oriented view is required at the

presentation layer. Using a RDBMS and requiring an object-oriented view of the data

provides a conceptual mismatch, known as the Object-Relational Mismatch (or

Impedance Mismatch). The basic three-tier architecture can be seen in Figure 9 that

captures where that mismatch occurs and must be addressed. This section will briefly

discuss that mismatch and conclude with a means of overcoming that mismatch.

The Object-Relational (OR) Mismatch, or Impedance Mismatch, is encountered

when the relational paradigm meets the object-oriented paradigm or vice versa. This

mismatch is formed by the relational paradigm being founded by mathematical principles

whereas the object-oriented paradigm is founded by software engineering principles

(Scott, 2006). The differences between the founding principles of the paradigms lead to

the mismatch. The relational paradigm is based on storing data in tables consisting of

columns and rows and is retrieved via Structured Query Language (SQL). Further, the

relational paradigm represents relationships among data stored in those tables by joining

tables. In contrast, the object-oriented paradigm is based on storing data and the data’s

associated behavior in the form of objects representing the relationships among data via

the objects themselves. Though these two paradigms when combined cause the OR

mismatch, individually they provide indisputable advantages as discussed in Chapter II.

In order to make use of the individual advantages this mismatch must be overcome.

Presentation
Layer

Object-Oriented

Application
Logic

Mismatch

Data Access

RDBMS

30

This OR mismatch is unavoidable in the proposed architecture shown in Figure 9.

The Application Logic Layer is the clear location to handle this mismatch. There are two

apparent solutions to overcoming this mismatch. First, the software developer may create

their own methods of converting the objects from the presentation layer to a relational

data format in order to persist them in the RDBMS. Additionally, the developer must

then create their own methods of converting the relational representation of that data to

an object acceptable by the presentation layer. The choice of creating methods to handle

this mismatch can become tedious and time consuming in the case of large applications

and databases. Second, the software developers may use existing software that is

designed to handle the OR mismatch, an OR Mapper. By using an OR Mapper the

Application Logic Layer essentially provides a virtual OODBMS to the presentation

layer. This allows the object-oriented Presentation Layer to communicate with the Data

Access Layer via the Application Logic Layer overcoming the OR Mismatch.

G. SUMMARY
In this chapter DB application design decisions were made in five specific areas

in an attempt to bridge the gap between modern object-oriented software development

technologies and the heavily used RDBMS. Again, these five decision areas are: (1) DB

Application Software Architecture, (2) Backend DBMS, (3) Client Connectivity, (4)

Database View, and (5) Application Logic Architecture. These decisions provide a basis

for developing a prototype DB application in the military.

The decision on DB application software architecture analyzed the three

prominent architectures in a military context and arrived at a logical decision. This

decision was based upon the architecture being capable of meeting the military demands

of scalability, support for multiple DBs, and being mobile device capable. The analysis

concluded with the three-tier DB application software architecture being the optimum

solution for the military environment.

The Backend DBMS decision analyzed the three dominant DBMSs available and

selected the DBMS that was the best fit. These DBMSs were contrasted by their product

availability, their product support, and the cost of data migration. Upon conclusion of

this analysis the DBMS that was best suited for military use was the RDBMS. The

31

RDBMS presented the highest product support and availability while incurring the lowest

data migration cost making it the natural choice.

The next required decision was regarding the means of client connectivity. This

discussion presented the requirement for mobile device access. The mobile device access

in turn mandates wireless connectivity for the client. The requirement for mobile devices

was founded by the demand for remote access to time relevant information and the large

availability of such devices.

Additionally, a discussion on database view was provided. Here the decision was

arrived at that an object-oriented view was required. This requirement was justified by

the benefits provided to the software developer, the user, and the military in general.

These benefits, as stated previously, were enabled by the use of an OOPL.

Finally, the decision to use a RDBMS and provide an object-oriented view of the

Database presented the object-relational mismatch. Further, the clear location to address

this mismatch was in the middle layer of the three-tier DB application software

architecture, the Application Logic Layer. The OR Mapper was the chosen method of

addressing this mismatch.

Figure 10. Proposed Three-Tier DB Application Architecture

Based upon the design decisions presented, the proposed three-tier DB application

architecture (Figure 10) was devised. This three-tier DB application software

architecture is logically separated into the three layers as shown in Figure 10. The

Result }

SQL

Result

Query

Data Access
Layer

RDBMS

}

Objects

Presentation
Layer

-Object-Oriented view

-OOPL based

-Mobile device
capable

Application
Logic Layer

-Object-Relational
Mapper

Data

32

presentation Layer maintains the OO view of the DB by using an OOPL while being

mobile device capable. Additionally, the presentation layer interacts with the application

logic layer by passing an object that captures the user’s request (query) to the application

logic layer and receives results in object form. In turn, the application logic layer

converts the user’s query object to a SQL based query via the OR Mapper. Conversely,

the OR Mapper receives the results of the query from the data access layer and converts

that data to object format. Lastly, the data access layer uses a RDBMS. This proposed

solution provides a means of bridging the conceptual gap between the object-oriented

paradigm and the relational paradigm while meeting modern military DB application

requirements.

33

IV. IMPLEMENTATION

A. INTRODUCTION
This chapter will provide a proof-of-concept prototype database (DB) application

that shows the viability of the proposed architecture devised in Chapter III. This

prototype will provide a means to overcome the Object-Relational (OR) Mismatch while

allowing mobile device access. The prototype will be presented by first discussing the

application domain followed by a detailed discussion of the prototype’s three-tier

architecture. The chapter then concludes with a description of the prototype’s design

architecture implementation, a sample interaction, and findings during implementation.

B. APPLICATION DOMAIN
The prototype DB application will focus on the commonly used personnel DB

application utilizezd by all military branches. Specifically, the prototype will present a

Joint Staff personnel DB application that allows mobile device access. Further, the

prototype application would be used to gain rapid access to personnel information. This

personnel information would then be used to provide for timely reports. For example, the

prototype DB application could be utilized by systems such as the Personnel Casualty

Report (PCR) System used by the U.S. Navy (USN) and U.S. Marine Corps (USMC). A

(PCR) is an electronic message containing casualty information for the purpose of

reporting as well as a source of information used to inform the next of kin of a casualty

status. Overall, the prototype will allow real time access to administrative information

and provide a more intuitive means of representing the information in USN and USMC

DB applications to non-expert users. Here a non-expert user is defined as a user that has

no knowledge of DB functionality and design or how to retrieve data from the DB

directly, for example, using Structured Query Language (SQL) based queries.

34

C. PROTOTYPE’S THREE-TIER ARCHITECTURE

Figure 11. Prototype Three-Tier DB Application Architecture

The prototype’s architecture, as seen in Figure 11, is logically separated into three

layers. These layers are the data access layer, the application layer, and the presentation

layer. Each of these layers will be described in more detail to include relevant

technologies (Java, PDA, Hibernate, and PostgreSQL) used to implement design

decisions arrived at in Chapter III. Additionally, the interaction between each layer will

be presented. Lastly, each layer will be described with regards to the military application

domain as previously described.

1. Data Access Layer
The goal of the data access layer is to provide a means of data storage using a

Relational Database Management System (RDBMS) as described in Chapter III. The

prototype uses a RDBMS to capture the personnel information and relationships for a

Joint Staff.

The RDBMS for this prototype was chosen based on four criteria. First, the

RDMBS must be open source due to thesis funding constraints. Second, the RDMBS

must provide standard SQL as a means of data access because SQL is common to

military RDBMSs. Third, the RDBMS must provide a means of data modification other

than SQL for ease of inserting/removing data to facilitate both trouble shooting and

application testing. Lastly, the RDBMS must be Java Database Connector (JDBC)

Result }

SQL

List

Command

Data Access
Layer

RDBMS

(PostgreSQL)

}

Objects

Presentation
Layer

-Object-Oriented view
-OOPL (Java)
-Mobile device
capable (PDA)

-PC capable

Application
Logic Layer

-Object-Relational
Mapper
(Hibernate)

Data

35

capable in order to interface with Java applications. Based on meeting the selection

criteria the specific RDBMS chosen for this prototype was postgreSQL, specifically

version 8.0.

Figure 12. Prototype Entity Relationship Diagram

As seen in Figure 12, the information stored in the RDBMS closely models that of

a real Joint Staff. However, none of the information used was actual military personnel

information in keeping with the Privacy Act of 1974. Additionally, as seen in the Entity

Relationship (ER) Diagram (Figure 12), the RDBMS captured all possible relationships

between tables. Specifically, there are instances of one-to-one, one-to-many, and many-

to-many bi-directional relationships. Further, there is an instance of an inheritance

relationship in the ER diagram. The inheritance relationship could be represented via

one-to-one relationships between entities, however; an object-oriented view of the DBMS

is desired. Inheritance is an object-oriented paradigm concept and does not necessarily

36

have a counterpart in the relational paradigm, yet since an object-oriented view of the

DBMS is essential to the scope of the thesis it was included in the schema for

implementation.

As previously stated, the ER diagram (Figure 12) represents the personnel

information of a Joint Staff. A Joint Staff is comprised of JCodes, analogous to a

department of a corporation. Further, the Joint Staff can be segmented to form a Task

Force that carries out specific functions under the purview of either the Joint Staff or the

Joint Staff’s higher command. Joint Staff personnel are represented in the ER diagram as

instances of people in the Person table (where each row in the table represent a person).

These people can then be further categorized as either Service Members or Dependents,

thus the inheritance relationship between the Person, Service Member, and Dependent

tables. These Dependents and Service Members are related in a one-to-many relationship

where a Dependent can be related to one or two Service Member entities. Conversely,

the Service Member Entities can be related to either multiple or no Dependent entities.

Additionally, the Service Members can have multiple Military Occupational Specialties

(MOSs) or Rates (analogous to a job title or specialty). The relationship between the

Service Member and the MOS Rate tables is represented in the ER diagram as a many-to-

many relationship where the Service Member entities can be related to multiple MOS or

Rate entities. Further, the Service Member to MOS Rate relationship is also

bidirectional. Additionally, the Service Member entities are further related to a JCode

entity by dual relationships. First, the Service Member entities have a bi-directional one-

to-one relationship with the JCode entity that represents the Service Member in charge of

each JCode. Second, the Service Member entities have a bi-directional one-to-many

relationship with the JCode entities as each Service Member entity can be related to only

one JCode entity. Furthermore, the relationships between the Service Member and the

Task Force entities are identical to those between the Service Member and JCode entities.

The ER diagram was implemented in the PostgreSQL RDBMS. The initial

method of creating the DB was to use a GUI based DB design tool, specifically DB

Designer 4.0. DB Designer allowed for easy modeling of the ER diagram in PostgreSQL

without the tedious process of manually creating the appropriate SQL script. Further, DB

Designer allowed for easy modification of the schema in order to capture all relationships

37

in the Joint Staff appropriately. Of note, this method of creating the DB in PostgreSQL

was only used to initially set up the schema and was later replaced by using the Object

Relational (OR) Mapper tool as described in more detail later.

The data access layer as seen in the Prototype Three-Tier DB Application

Architecture diagram (Figure 11) will directly interface with the application logic layer.

Specifically, the data access layer will receive a SQL query from application logic layer

and return the resulting data. The interaction between layers will be enabled by a JDBC

connection between the application logic layer and the data access layer.

2. Application Logic Layer
The application logic layer as stated in Chapter III, will overcome the OR

Mismatch between the data access layer and the presentation layer. The means to

overcome this mismatch is via an OR Mapper. Additionally, as stated in previous

chapters, the application must allow for wireless connectivity due to the growing military

demand. This section will discuss the choice of a specific OR Mapper, specific means of

wireless connectivity, and the incorporation of those items into the three-tier architecture

at the application logic layer.

The specific OR Mapper chosen for this prototype must meet four minimal

criteria; (1) the mapper must be configurable to any RDBMS, (2) the mapper must

provide sufficient support and availability, (3) the mapper must be open source, and (4)

the mapper must be capable of interfacing with a JDBC connection. Based on these

criteria and available OR Mappers, the specific OR Mapper chosen for implementation

was Hibernate (more specifically, version 3.1). Hibernate is configurable, has sufficient

support, is open source, and is capable of interfacing with a JDBC connection making it a

practical solution for the prototype’s three-tier application architecture.

As discussed in Chapter III, it was necessary to allow for both wired and wireless

connectivity to the application. The method of allowing for this dual connectivity was by

using a connection manager capable of handling multiple clients of both wired and

wireless configurations. Specifically, Apache Tomcat version 5.5 was chosen for these

capabilities. Further, Apache is a supported by Hibernate as a means of connection

pooling and is also open source.

38

Figure 13. Application Logic Layer Implementation

As seen in Figure 13 above the application logic layer utilizes Hibernate and

Apache to overcome both the OR mismatch and provide for wired and wireless

connectivity. The Apache Servlet will receive a query in object form from the

presentation layer and pass that query object to the Hibernate Interface where the query is

converted to a query recognized by Hibernate. Hibernate then executes the query via its

JDBC interface with the data access layer and converts the query result to a list of java

objects. That list of objects is passed back to the Apache Servlet where it is transmitted

to the presentation layer.

3. Presentation Layer
The presentation layer’s goals during implementation were threefold; (1) to be

object-oriented, (2) to provide the users access to a backend DBMS via both a mobile

device and a PC, and (3) to provide an effective and easy to use querying tool for non-

expert users. These goals comprise the overall objective of providing a more intuitive

means of representing data for military DB applications in a mobile environment. The

means of achieving each of these goals and appropriate implementation decisions will be

further discussed.

Query

List

Application Logic Layer
HibernateApache

-Java Servlet

-Hibernate
Interface

-OR Mapper

-RDBMS
Interface
(JDBC)

39

Figure 14. Presentation Layer Implementation

The presentation Layer of the DB application, as seen in Figure 14, presents the

Graphical User Interface (GUI) to the user. As discussed in Chapter II, this GUI can be

of three primary formats; the Pure Web Browser, the Java Applet, and the Full Software

Application. The Full Software Application was chosen for its ability to provide greater

flexibility in GUI design and the ability to provide user defined data access to the DBMS

data. Further, an Object Oriented Programming Language (OOPL) was a requirement as

stated in previous chapters. The prototype DB application utilizes Java as its OOPL due

to Java being the current industry standard, extremely portable, and well supported.

Additionally, Java is supported for mobile device application (specifically the PDA)

development meeting the mobile access requirement as discussed in Chapter III.

Further, Java allows the same GUI, or program code, to be executed on both the

PDA Client and the PC. The prototype accomplishes this by utilizing Jeode, a Java

Virtual Machine (JVM), for the PDA application and a Sun JVM on the PC. Writing one

program supported on both platforms requires that the presentation layer GUI be written

to the more restrictive Java libraries of Jeode. Specifically, the application must be

compiled to Java Developer Kit (JDK) version 1.1 or older. Additionally, the GUI design

centers on providing the user a proper display for both the PC and the PDA while

maintaining the same java program code for both platforms. The specific PDA chosen

Presentation Layer

Q
ue

ry
 G

U
I

O
utput

GUI

Client
Logic

Command

Input/Output

(I/O)

List

-OOPL (Java)
-PDA (iPAQ)
-Jeode
-PC
-Sun JVM

40

for this application was the Hewlett Packard (HP) iPAQ 5500. This model of PDA is

similar to the rugged version of the PDA being fielded by the USMC, the Dismounted

Data Automated Communications Terminal (D-DACT).

As seen in the Presentation Layer Implementation diagram (Figure 14), the

presentation layer is logically segmented into the GUI, the Client Logic, and the

Input/Output (I/O) segments. These segments break up the overall functionality of the

presentation layer into logical partitions. The presentation layer begins when the user

inputting the selection criteria into the GUI forming the initial query to include the

requested type of object to be returned. The user query is passed to the Client Logic

where it is converted to a Command Object and then passed on to the I/O segment of the

presentation layer. The I/O segment will then transmit the Command object to the

Apache Servlet and conversely receive a list of objects from the Apache Servlet that

match the selection criteria initially requested by the user. The returning result list is

passed to the Client Logic segment where it is iterated through based on the object types

contained in the list. Those objects are then converted to the proper format and presented

to the GUI for display to the user.

D. PROTOTYPE DESIGN AND ARCHITECTURE
This section will advance the architecture presented in the Prototype Three-Tier

DB Application Architecture diagram (Figure 11) to a realization of the prototype DB

application. The prototype design and architecture discussion will include key program

code and methods that are critical to understanding the prototype DB application.

Additionally, Unified Modeling Language (UML) diagrams will be provided for the

presentation and application logic layers. These UML diagrams will be discussed in

detail in order to supply a visual representation of the DB application Java class

relationships. The prototype DB application will serve as a proof-of-concept that will

provide handheld device access to a Joint Staff personnel DB demonstrating the viability

of the architecture proposed by this thesis.

41

1. Overall Design

Figure 15. Implemented Prototype DB Application Architecture

As seen in Figure 15 above, the prototype DB application is represented in a

three-tier form. Further, these tiers (or layers), though logically separated, interact with

one another to achieve the overall goals presented by the thesis. This interaction between

layers will be described as a request for information is initiated and then that request will

be followed through the DB application architecture where it is processed and the results

are displayed to the user. Later in the chapter a sample interaction will be provided and

this process will be repeated for a specific instance of a request.

Initially, the user interfaces with the PCRClient program in order to request

information regarding the Joint Battle Staff’s personnel DB. This request is captured in

Ja
va

 L
is

t

Presentation Layer

JDK 1.2

PCRClient

-PC/PDA

Application Logic Layer

Apache Tomcat 5.5

Data Access Layer

PostgreSQL

C
om

m
and O

bject

Cmd Obj

Java List
PCRServer

-Servlet

DataManager

Hibernate

SQ
L

D
ata

42

the PCRClient as a Command object and is transmitted over a Hypertext Transfer

Protocol (HTTP) connection to the Apache Tomcat Servlet (PCRServer). The

PCRServer in turn passes the Command object to an instance of the DataManager class.

DataManager then interprets the Command object contents and generates a Hibernate

Query Language (HQL) query. The HQL query is then converted to SQL by Hibernate

and passed to PostgreSQL via the JDBC connection. PostgreSQL in turn executes the

SQL query and returns the results to Hibernate. Hibernate then captures the returning

data as a list of objects and presents that list to DataManager where it is handled

appropriately (this will be discussed in more detail later). After DataManager processes

the list it passes the results in a new list of objects to PCRServer. Lastly, PCRServer

transmits the list to the PCRClient where it is processed and displayed to the user. Each

of these layers and classes will be discussed in more detail in the following sections in

order to provide a better understanding of the processes that take place at each layer and

within each class.

2. Data Access Layer
The data access layer consists of the RDBMS, PostgreSQL 8.0, installed

according to its documentation. This RDBMS captures the relationships of a Joint Staff

personnel DB as seen in the ER diagram (Figure 12). Further, this DB was initially

created using DB Designer as already discussed, however; Hibernate was used to create

the final version of the DB. The DB table structure and contents will be described for a

specific table, Service Member. The remaining tables of the DB are similar in scope to

Service Member therefore no additional explanation will be provided.

Understanding the structure of the Service Member table is critical to

understanding the relationships that exist in the DB because the Service Member table is

the hub of the DB. The structure of this table as represented by the PostgreSQL Admin

Tool in SQL form is shown below:

CREATE TABLE sm

(

 per_id int8 NOT NULL,

 rank varchar(255),

 branch varchar(255),

 nok varchar(255),

43

 deployed bool,

 jcode_id int8,

 tf_id int8,

 CONSTRAINT sm_pkey PRIMARY KEY (per_id),

 CONSTRAINT fke5a2acdb92a FOREIGN KEY (per_id) REFERENCES per (per_id) ON UPDATE
NO ACTION ON DELETE NO ACTION,

 CONSTRAINT fke5a679e6502 FOREIGN KEY (jcode_id) REFERENCES jcode (jcode_id) ON
UPDATE NO ACTION ON DELETE NO ACTION,

 CONSTRAINT fke5ae6fef916 FOREIGN KEY (tf_id) REFERENCES tf (tf_id) ON UPDATE NO
ACTION ON DELETE NO ACTION

)

WITH OIDS;

This SQL representation of the table shows the table constraints. Further, these

constraints were generated by Hibernate upon DB creation. The rational for these table

constraints will be provided later in the Hibernate discussion. As seen in the SQL above,

the primary key of the Service Member table is the per_id column. Furthermore, this

column is used to capture the relationship between the Service Member table and all

other tables in the DB by acting as a foreign key as appropriate.

Beyond creating the tables in the DB there needed to be information

representative of personnel data for a Joint Staff. This need was met by using the java

DataFiller class. Vital portions of the DataFiller class are provided below with an

explanation of their purpose and functionality. The main method of this class is shown

below:

public static void main(String[] args) {

 if(args[0].equals("fillDB")){

 mgr.fillDB();

 }

 HibernateUtil.getSessionFactory().close();

}

The main method simply calls the fillDB() method in order to populate the DB by using

Hibernate. After the fillDB() method has populated the DB the session that Hibernate

has open with the DB is closed. The fillDB() method is provided below followed by an

explanation of how it populated the tables of the DB with information representative of a

Joint Staff personnel DB:

44

public void fillDB(){

 //create and save MOSs, Jcodes, TFs to DB

...

 for(int i = 0; i < 20; i++){

 //get session from Hibernate
 Session s = HibernateUtil.getSessionFactory().getCurrentSession();
 //begin transaction
 s.beginTransaction();

 //create ServiceMember & Depedent objects to be saved to DB
 ServiceMember sm = mgr.createSM(i);

 //create a random number of dependents per servicemember up to 4
 int numDep = getRandom(5);

 for(int j = 0; j < numDep; j++){

 Dependent dep = mgr.createDep(j, sm);
 s.save(dep);
 }

 //Add up to 4 MOS's to each ServiceMember
 int numMOS = getRandom(4);

 for(int j = 0; j < numMOS; j++){

 int mosNum = getRandom(mosList.length);
 sm.addToMOS(mosList[mosNum]);
 s.update(mosList[mosNum]);
 }

 //Assign each ServiceMember to a Jcode
 int jcodeNum = getRandom(jcodes.length);
 jcodes[jcodeNum].addToServiceMembers(sm);
 s.update(jcodes[jcodeNum]);

 //Assign each ServiceMember to a TaskForce
 int tfNum = getRandom(tfs.length);
 tfs[tfNum].addToServiceMembers(sm);
 s.update(tfs[tfNum]);

 s.save(sm);

 //commit the transaction to the database
 s.getTransaction().commit();
 }

}

Initially, the method fills the entries for the MOS, Jcode, and TaskForce tables. The

remaining tables are then filled by the main loop of the method, specifically twenty

Service Member table entries. The main loop begins by getting a session from Hibernate

and beginning a transaction with PostgreSQL. ServiceMember objects are then created

and given a random number of Dependent objects not to exceed four. This is followed by

45

an assignment of MOS(s), Jcode, and TaskForce objects to each ServiceMember which

are then persisted to PostgreSQL via Hibernate by committing the transaction. Table 1

below shows the resulting relation.

Table 1. Service Member Table in PostgreSQL

Table 1 represents the Java created ServiceMember objects from the DataFiller

class in relational format. The other tables are similar in nature and correspond to the ER

diagram of a Joint Staff. Furthermore, the ServiceMember class is a subclass of the

Person class exercising inheritance in OOPL, specifically Java. Additionally, inheritance

is modeled in the ER diagram and captured in the RDBMS as table constraints between

the Person and ServiceMember tables. Thus, inheritance in the RDBMS is enabled via

the OR Mapper.

3. Application Logic Layer

The application logic layer is where the majority of the implementation takes

place. This layer, as seen in the Implementation Prototype DB Application Architecture

diagram (Figure 15), consists of a PCRServer, a DataManager, and Hibernate. Overall,

the application logic layer receives a user request for information in the form of a

Command object and converts that object to a SQL query. That query is then executed

via the interface with the data access layer and that query’s results are then converted to a

46

list of objects and returned to the presentation layer. This section will provide a detailed

description of the PCRServer, DataManager, and Hibernate. This description will

include a UML diagram and critical segments of program code in order to facilitate a

better understanding of the application logic layer to the reader.

Figure 16. Application Logic Layer UML Diagram

The UML diagram above (Figure 16) represents the java class structure of the

application logic layer. Here the primary java classes are shaded and will be discussed in

more detail. The application logic layer begins by waiting for input from the presentation

layer via the PCRServer class. This class is a Java HttpServlet that provides remote

access via a Universal Resource Locator (URL) to a web server, specifically Apache

Tomcat 5.5. Key portions of the PCRServer class are provided below:

public class PCRServer extends HttpServlet {

...

public void doPost(HttpServletRequest request, HttpServletResponse
response) throws IOException, ServletException {

 //create datamanager object
 DataManager mgr = new DataManager();

//cmd items
Command serverCommand = new Command();

Java Class Dependency

47

//Receive Obj from server
ObjectInputStream in =

new ObjectInputStream(request.getInputStream());

try{//rtv cmd object and set var

//get cmd obj

serverCommand = (Command) in.readObject();

}catch (Exception e) {

System.out.println("Problem retrieving object");

}

 in.close();

 //do work
 List outList = mgr.getResults(serverCommand);

 ObjectOutputStream out =
 new ObjectOutputStream(response.getOutputStream());

 out.writeObject(outList);

out.flush();
 out.close();
 }
 }

The PCRServer receives input from the PCRClient via the doPost() method. The

doPost() method creates a DataManager and Command object and then opens an

ObjectInputStream. The Command object and all other objects that are transmitted via

the HTTP connection implement the java.io.Serializable interface. Further, all objects

transmitted in the prototype DB application use a java.io.ObjectStream. Specifically,

ObjectInputStream receives the Command object from the PCRClient and then closes the

ObjectInputStream. PCRServer then passes the Command object to the DataManager

object and receives a list of objects in return. The ObjectOutputStream is then used to

send the list of objects to the PCRClient and is closed. The process presented by the

PCRServer allows the Command object containing the user query to be sent to the

DataManager class and receive the corresponding results from the DB as a list of objects.

DataManager receives the Command object containing the user query from

PCRServer, converts the Command object to an HQL query and uses Hibernate to

retrieve the requested information from PostgreSQL. The retrieved information is then

returned to DataManager and ultimately PCRServer as a list of objects. DataManager

will be discussed in more detail to include appropriate abbreviated segments of program

code to facilitate an understanding of how this conversion process occurs. As shown

48

previously the PCRServer passes the Command object to the DataManager’s getResults(

) method shown below:

public List getResults(Command cmd){
 ...
 //process updates here
 if(cmd.getCmdType() == UPDATE){

 ...
 //process queries here
 }else if(cmd.getCmdType() == QUERY){
 resultList = processQuery(getQuery(cmd));
 //process list_db here
 }else if(cmd.getCmdType() == LIST_DB){

 ...
 }
 ...
 return resultList;
}

As the method above shows, the Command object is checked to determine what kind of

action is being requested by the user. In the case of an information request, it is a query

type Command object (for the scope of this thesis the prototype DB application was a

read only application and did not allow for updates or additional functionality). Once

identified as a query type of object, the Command object is sent to the getQuery()

method. The getQuery() method in turn converts the Command object’s specific

requests to an SQL query and is then passed on to the processQuery() method. Here, a

list of objects is returned to DataManager and ultimately returned to PCRServer.

The processQuery() method, as discussed, processes the query by interacting

with Hibernate. The specifics of how this is accomplished are provided below:

public List processQuery(String query){

//get session from HibernateUtil and begin a transaction
Session session = HibernateUtil.getSessionFactory().getCurrentSession();
session.beginTransaction();

//create a result list to put data into

List result = new ArrayList(LIST_SIZE);

//create another list in the case the original is
//further filtered by Jcode for instance
List newList = new ArrayList(LIST_SIZE);

//save the list of resulting objects from the query to a list
result = session.createQuery(query).list();

...

/* Here the resulting list is processed and the objects that match

 the return type are copied into newList */

49

//commit the transaction to DB
 session.getTransaction().commit();

return getCopied(result);

}

The method begins by establishing a session with Hibernate by requesting the current

session from HibernateUtil. A Hibernate session is a connection to the DBMS allowing

data access operations by using a transaction. Once that transaction is established with

the PostgreSQL the HQL query is then passed to the Hibernate session’s createQuery()

method resulting in a Hibernate Query object. This Query object is then processed by the

session and the corresponding results are returned as a list of objects. The resulting list of

objects is obtained from Hibernate and then sent to the getCopied () method where the

list is modified to only allow for JDK 1.1 functionality for the PCRClient.

Hibernate is the workhorse of the application logic layer. Hibernate not only

persists the Java objects to the RDBMS, it also executes queries with the DBMS and

converts the results to Java objects. Hibernate was installed and configured in

accordance with its online documentation to allow for its interaction with PostgreSQL.

The prototype DB application utilizes a Extensible Markup Language (XML) file as a

means of passing configuration parameters to Hibernate, specifically hibernate.cfg.xml,

portions of which are provided below:
...

<hibernate-configuration>
 <session-factory>

 <!-- Database connection settings -->

<property name =
"connection.driver_class">org.postgresql.Driver</property>

<property name = "connection.url">
jdbc:postgresql://localhost/Thesis</property>

 <property name = "connection.username">username</property>
 <property name = "connection.password">password</property>

 ...
 <!-- SQL dialect -->

<property name =
"dialect">org.hibernate.dialect.PostgreSQLDialect</property>

 ...
 <!-- Drop and re-create the database schema on startup -->
 <property name="hbm2ddl.auto">create</property>

 <mapping resource="Person.hbm.xml"/>
 <mapping resource="MOS.hbm.xml"/>
 <mapping resource="Jcode.hbm.xml"/>
 <mapping resource="TaskForce.hbm.xml"/>

 </session-factory>
</hibernate-configuration>

50

The Hibernate configuration file above shows the DBMS connection settings that allow

interaction with PostgreSQL. These DBMS settings include the appropriate JDBC

driver, the username, the password, and the appropriate dialect of SQL required to access

PostgreSQL. Further, the configuration file allows for the schema to be dropped and

recreated each time it is accessed (whenever Hibernate attempts to access PostgreSQL).

Hibernate references each of the mapping resources listed in the configuration file to

generate the schema in the DB via the appropriate SQL dialect. The mapping resources

for the prototype DB application are the Person, MOS, Jcode, and TaskForce XML files.

The XML mapping files listed in the configuration file of Hibernate correspond to

Java classes and PostgreSQL tables. Further, the mapping files allow Hibernate to

transition from Java (an OOPL) to PostgreSQL (an RDBMS) and overcome the OR

Mismatch as described in Chapter III. Overcoming the OR Mismatch via Hibernate

provides the desired object-oriented view of the DBMS. Furthermore, the Person

mapping file enables the prototype DB application to offer the object-oriented

characteristic of inheritance. An abbreviated Person.hbm.xml file is provided below:
...
<hibernate-mapping>
 <class name="DBObjects.Person" table="per">
 <id name="id" column="per_id">
 <generator class="native"/>
 </id>
 <property name="firstname"/>
 ...
 <property name="zip"/>

 <joined-subclass name="DBObjects.ServiceMember" table="sm">
 <key column="per_id"/>
 <property name="rank"/>
 ...
 <property name="deployed"/>
 <set name="dependents" table="sm_dep">
 <key column="sm_id"/>

<many-to-many column="dep_id" class =
"DBObjects.Dependent"/>

 </set>
 <set name="MOS" inverse="true" table="MOS_SM">
 <key column="sm_id"/>

<many-to-many column="mos_id" class =
"DBObjects.MOS"/>

 </set>
 </joined-subclass>
 <joined-subclass name="DBObjects.Dependent" table="dep">
 ...
 </joined-subclass>
 </class>

</hibernate-mapping>
The Person mapping file above begins by showing the direct correlation between the

Person class and the corresponding table (“per”) in PostgreSQL. The mapping file then

51

captures the Person class attributes (firstname, zip, etc.) that are also columns of the “per”

table. The mapping file demonstrates inheritance between Person and ServiceMember

(and between Person and Dependent) by joining their respective tables and noting the

ServiceMember class as a subclass of Person. This demonstration of inheritance models

the inheritance of the Person class and its subclasses in both Java and the RDBMS.

Furthermore, this mapping file captures the relationships between the tables and the Java

classes. Specifically, the many-to-many relationship is represented between the

ServiceMember and the MOS objects and their corresponding tables in the Person

mapping file.

DBObjects is a package of Java classes consisting of the Person, ServiceMember,

Dependent, MOS, JCode, and TaskForce classes. Additionally, these classes are

represented in both a PostgreSQL table and an XML mapping file. The relationships

between the classes and the tables are consistent with the schema presented in the ER

diagram provided (many-to-many, one-to-many, etc.). As already discussed, the table

relationships are captured in the XML mapping files, however; the java class

relationships are captured in the classes themselves. A portion of the ServiceMember

class is provided to demonstrate the many-to-many relationship between objects:

public class ServiceMember extends Person implements java.io.Serializable {

 ...

 //basic constructor
 public ServiceMember(){
 super();
 dependents = new HashSet();
 MOS = new HashSet();
 }

 ...
 protected Set getMOS(){
 return MOS;
 }

 protected void setMOS(Set MOS){
 this.MOS=MOS;
 }

 public void addToMOS(MOS mos){
 this.getMOS().add(mos);
 mos.getServiceMembers().add(this);
 }

 ...
}

All DBObject classes in the prototype DB application have an appropriate getter and

setter method for each attribute. For example, the ServiceMember object above has a set

52

of MOS objects and an appropriate getter and setter method for that set of MOS objects.

Further, the set of MOS objects is used to capture the many MOS objects that can relate

to a given ServiceMember object. The addToMOS() method above adds the set of MOS

objects to the ServiceMember object. Furthermore, the addToMOS() method then adds

the current ServiceMember object to the set of MOS objects making the relationship

between the ServiceMember and MOS objects bidirectional. Of note, the bidirectional

relationship is also represented in the Person XML mapping file by showing at least one

side of the relationship to contain the “inverse=true” statement. Other relationships are

modeled in a similar fashion in both the java classes and the XML mapping files and will

not be further discussed.

4. Presentation Layer
The presentation layer is where the user interfaces with the prototype DB

application via a GUI. This layer, as seen in the Implemented Prototype DB Application

Architecture diagram (Figure 15), consists of a PCRClient running on a PC or a PDA.

The presentation layer receives user input via the GUI and converts that input to a

Command object. The Command object is then sent via a HTTP connection to the

PCRServer and receives a list of objects in return. This list of objects is then displayed

on the GUI to the user. This section will provide a description of the PCRClient to

include a UML diagram and critical segments of program code. The section will then

conclude with a brief discussion of the PDA’s specific implementation.

Figure 17. Presentation Layer UML Diagram

Java Class Dependency

53

The PCRClientDisplay in the UML diagram (Figure 17) above provides the GUI

functionality of the PCRClient. PCRClientDisplay awaits input from the user via the

PCRClientListener then passes that input to the PCR_Controller where it is converted to

a Command object. Additionally, the PCR_Controller contains all of the program logic

and I/O of the PCRClient. The PCRClient will be described following the Presentation

Layer Implementation diagram, Figure 14, to include the GUI, Client Logic, and I/O.

Furthermore, the DBObjects above are identical to those found in the application logic

layer.

Figure 18. PCRClient GUI

The goal of the PCRClient GUI (Figure 18) is to provide an object-oriented view

of the RDBMS and an intuitive means of accessing the data to the user. The GUI went

through several iterations of design to collect user input ranging from a single touch

button interface to the drop-down menu interface as seen above. Additionally, the small

size of the PDA client display was a major design consideration in regards to both the

input and output portions of the GUI. The GUI’s dimensions are set to an appropriate

size for both a PC and a PDA (iPAQ). This was accomplished by allowing the GUI to

resize itself respective to the specific device’s display that it is being executed on. The

following segment of code from the PCRClientDisplay shows how this was

accomplished:

/* Adjusts the size of the PCR Client interface in accordance with

* with device in use. Ensures that the PCRClient frame is 90% of

54

* the width and 90% of the height. of the display. */

private void resize(){

 f.pack();

 //Set frame to the screen size

 Toolkit toolkit = Toolkit.getDefaultToolkit();

 Dimension fullScreenSize = toolkit.getScreenSize();

 f.setSize(fullScreenSize.width - (int) (fullScreenSize.width *.1),

 fullScreenSize.height - (int)(fullScreenSize.height *.1));

 f.show();

}

The resize() method of the PCRClientDisplay above sets the GUI display to 90% of the

client’s display. This method begins by calling the pack() method and applying it to an

Abstract Windowing Toolkit (AWT) Frame, specifically “f”. The pack() method sizes

the GUI window to a standard window size. The resize() method then resizes the GUI to

90% of the overall device’s display. In addition to making the GUI properly fit the

screen of the targeted device, the GUI implementation was limited to JDK 1.1 libraries as

discussed previously. The mandated use of JDK 1.1 to accommodate a PDA client

limited the GUI implementation to the Java AWT package vice the more current Java

Swing package.

The PCRClient logic and I/O is implemented in PCR_Controller which has three

main functions; (1) to creates the Command object, (2) to handle the I/O, and (3) to

format the returning list for GUI display. The below code segment is where the

Command object is created based on user input from the GUI:

public void beginSequence() {

 //checks conn
 establishConnection();

 //person
 String person = display.getPerson();

 //jcode
 String jcode = display.getJcode();

 //mos
 String mos = display.getMos();

 //return type
 String returnType = display.getReturnType();

 //create and fill selection filter
 String[] selectionFilter = new String[3];
 selectionFilter[0] = jcode; //("j1"-"j7") or "none"
 selectionFilter[1] = person; //("active" or "depend") or "none"

55

 selectionFilter[2] = mos; //("num" or "name") or "none"

 //create and pass cmd client
 Command clientCommand = new Command(1, returnType, selectionFilter);

 sendAndCheckResponse(clientCommand);
 }

The PCR_Controller’s beginSequence() method above is initiated when the user selects

the “send request” button on the GUI. The establishConnection() method is then used to

create a connection to the Apache HttpServlet via an URL. The beginSequence method

then retrieves the user’s selections from the GUI drop-down menus which are then saved

into the selectionFilter array or object returnType as appropriate. The selectionFilter

captures the user’s query request and the returnType specifies the type of objects returned

from the Apache HttpServlet. The Command object is passed three variables in its

creation; (1) the command type (“1” specifying a query, note: all Command objects are

query objects for the scope of this thesis), (2) the object returnType, and (3) the

selectionFilter. That Command object is then sent to the Apache HttpServlet via the

sendAndCheckResponses() method as seen below:

public void sendAndCheckResponse(Command cmd) {

 try {
 conn.setDoOutput(true);
 conn.setDoInput(true);

 //Outgoing
 ObjectOutputStream out=new ObjectOutputStream(conn.getOutputStream());
 out.writeObject(cmd);

 out.flush();
 out.close();

 //Incoming Stream
 ObjectInputStream in = new ObjectInputStream(conn.getInputStream());

 // Incoming List
 List inList = (List)in.readObject();
 in.close();

 //Display type on gui
 String objRequested = cmd.getObjType();
 String[] request = cmd.getFilter();
 String status = request[1];
 ...

 //Pass List to correct output method
 if(objRequested.equals("Person") && status.equals("Active")){
 smOutput(inList);
 }

 ... //additional if statements
 }catch (Exception e) {
 ...
 }
 }

56

The PCR_Controller’s method above is the compliment to the PCRServer’s

doPost() method. The sendAndCheckResponse() method begins by allowing for the

URLConnection (“conn”) to accept input and output. The method then specifies the

output of the URLConnection as an ObjectOutputStream and transmits the newly created

Command object. After the ObjectOutputStream is flushed and closed, the input of the

URLConnection is in turn specified as an ObjectInputStream. That ObjectInputStream

then receives the list of objects from the PCRServer and is closed. Upon receiving the

list of objects from PCRServer, the Command object that initiated the method call

(“cmd”) is used to specify the type of objects and user’s display requirement. For

example, if the type of objects requested are of type Person and they are on active duty

then the list is passed to the smOutput() method for proper GUI display. Likewise, lists

containing different object types are handled similarly via their respective display

method(s).

The PDA’s JVM (Jeode) introduces specific requirements, namely the necessary

Linker file. The Jeode JVM running on the iPAQ accepts inputs via this Linker file.

Further, the Linker file allows for one-click access to PCRClient execution preventing the

need for troublesome manual PDA input(s) via a stylus. This Linker file injects those

inputs to the JVM for the user; the Linker file for this application is

PCRClientDisplay.lnk shown below:

18#"\Windows\evm.exe" -Djeode.evm.console.local.keep=TRUE -cp \Windows\lib\Demo3

PCRClientDisplay

The Linker file above is used to keep the Java application open on the PDA by setting the

console variable to true. Additionally this file directs Jeode to the location of the main

class of the application, PCRClientDisplay. Further, this Linker file can specify Java

Archive (JAR) files to a classpath. These JAR files allow for increased flexibility to the

developer by introducing the potential for extended libraries.

E. SAMPLE INTERACTION

The following sample interaction illustrates the flow of commands and data

among the different layers. The sample interaction will capture the request for Person

objects with the following selection criteria: active duty service member, in the J7, with

no MOS displayed. The sample interaction will follow the diagram below (Figure 19) in

57

numeric sequence expounding upon critical points of the sample interaction beginning by

the user using the GUI to request information and result in the requested information

presented to the user via the GUI.

Figure 19. Prototype DB Application Sample Interaction

1. Command Object Creation and Transfer
The Command object is created in the PCR_Controller’s beginSequence()

method based upon the user’s inputs (Active, J7, no MOS, Person return type, and query

type Command object). The Command object is then transmitted to the PCRServer via

the PCR_Controller’s sendAndCheckResponse() method. This transmission occurs over

an HTTP URL connection established between the PCR_Controller and the PCRServer.

6 Ja
va

 L
is

t

Presentation Layer

JDK 1.2

PCRClient

-PC/PDA

Application Logic Layer

Apache Tomcat 5.5

PostgreSQL

C
om

m
and O

bject

Cmd Obj

Java List
DataManager

SQ
L D

ata

1

2 3

Data Access Layer
PostgreSQL 8.0

4

Hibernate 3.1

5

PCRServer
-Servlet
2

7

58

2. PCRServer Receives the Command Object
PCRServer is a Java HttpServlet listening via the doPost() method over an HTTP

URL connection. Once the doPost() method is invoked the Command object is received

via an ObjectInputStream and then passed to an instance of DataManager’s getResults()

method. DataManager then processes the Command object using the OR Mapper.

3. DataManager and Hibernate Interaction
The DataManager receives the Command object via its getResults() method.

Since this specific Command object is of type “query”, it is passed to the getQuery()

method where the user’s request is converted to HQL. The HQL query generated by the

getQuery() method is:

from Jcode j where j.number = 7.

That HQL query is then passed to the processQuery() method where a Hibernate Session

is acquired from HibernateUtil. Lastly, that Session then creates a Hibernate Query

object and receives the results via the Hibernate JDBC connection as a list of JCode

objects (the J7 object) from PostgreSQL.

4. List of Objects Received from PostgreSQL
The List of JCode objects is returned to the processQuery() method of

DataManager. Since the Command object specifies active duty ServiceMember objects

as the return type, the processQuery() method will then capture the Set of

ServiceMember objects in the J7. The J7 ServiceMember objects are then saved into a

new java list and passed to the getCopied() method. The getCopied() method copies

ServiceMember objects into a new list ensuring that only JDK 1.1 functionality remains.

That new list is then returned to the getResults() method in DataManager where it was

originally called from PCRServer.

5. PCRServer Receives List of Objects

Once the list of J7 ServiceMember objects is received by the PCRServer’s

instance of DataManager it is supplied to an ObjectOutputStream. The

ObjectOutputStream in turn transmits the list from the PCRServer’s doPost() method to

the PCR_Controller. Finally, the ObjectOutputStream is closed upon transmission of the

list of objects.

59

6. PCRClient Displays Results
The PCRController’s sendAndCheckResponse() method receives the list of J7

ServiceMember objects over the existing HTTP URL connection established between the

PCR_Controller and the PCRServer. Since the objects in the list are of type

ServiceMember, the list is passed to the smOutput() method for proper display in the

output window of the GUI. The specific data requested by the user (Active, J7, no MOS,

and Person return type) is shown below as it is presented to the output portion of the

GUI:

0 Rank: E-1 L_Name: servicemember9 SSN: 565258962 Sex: M
1 Rank: E-3 L_Name: servicemember14 SSN: 945971584 Sex: M
2 Rank: E-1 L_Name: servicemember18 SSN: 225123085 Sex: M
3 Rank: E-2 L_Name: servicemember11 SSN: 804804729 Sex: M
4 Rank: E-9 L_Name: servicemember8 SSN: 52940794 Sex: M

F. FINDINGS DURING IMPLEMENTATION

During the implementation of the proposed architecture there were several small

problems encountered and overcome. There were two significant findings that had an

impact on the DB application as a whole. The first significant finding was that the Set

used by Hibernate was proprietary to Hibernate causing a conflict with the PCRClient.

The second significant finding was encountered upon attempting to overcome that

Hibernate proprietary Set. The remainder of this chapter will discuss both of these

findings in more detail.

The first significant finding during implementation was that the Hibernate Set was

not the same as the java.util.Set. This finding is significant for one primary reason.

Hibernate utilizes the Set as a primary means of capturing the many side of a

relationship; namely, the many-to-many, the many-to-one, or the one-to-many

relationship. In the simplest of terms this is accomplished by each java object that

contains a many relationship to another object capturing that many relationship via a Java

Set. For example, the JCode table has a many-to-one relationship with the Service

Member table as seen in the ER Diagram, Figure 12. Likewise each JCode object uses a

Set of ServiceMember objects to represent that same many-to-one relationship. This at a

glance seems to be no problem, however; when the PCRClient program ran and the result

list reached the PCRClient an error was generated. Specifically:

60

org.hibernate.collection.PersistentSet class java.lang.ClassNotFound.Exception

After troubleshooting the error was narrowed down to those very instances of the Java

Set that were used by Hibernate to capture the many side of a relationship. This error

was caused by a Hibernate version of the Set being used, namely the

org.hibernate.collection.PersistentSet vice the expected java.util.Set.

Upon determing the cause of the error, two potential solutions to the problem

were arrived at: (1) the objects contained in the Hibernate Set could be deep copied and

saved into a java.util.Set in order to be recognized by the client or (2) the Hibernate3.jar

file could be included in the classpath of the client in order to recognize the Hibernate

version of the Java Set. The first solution, although viable, required additional code and

could be potentially time consuming to incorporate into the prototype DB application.

Thus, the clear choice was to include the Hibernate3.jar file in the client classpath.

Including the Hibernate3.jar file in the classpath was initially tested on a PC and

went without a hitch producing the desire outputs to the PCRClient as expected.

Including the Hibernate3.jar file on the PDA was much more complex, thus encountering

the second significant finding during implementation. Initially, Hibernate3.jar was added

to the PDA classpath via a Jeode Linker file as follows:

18#"\Windows\evm.exe" -Djeode.evm.console.local.keep=TRUE -cp

\Windows\lib\Demo3\hibernate3.jar;\Windows\lib\Demo3 PCRClientDisplay

The Linker file above failed to solve the problem as the Hibernate3.jar file is compiled to

JDK 1.5 and the Jeode JVM is only capable of supporting JDK 1.1 or older. To

overcome the inability to incorporate the Hibernate3.jar file into PCRClient on the PDA

led to four possible solutions: (1) utilize a PDA JVM capable of supporting JDK 1.5, (2)

select a new OR Mapper, (3) recompile the Hibernate3.jar file to JDK 1.1 or older, or (4)

not use the Hibernate3.jar file on the PCRClient and deep copy the objects in the

Hibernate Set to a java.util.Set as previously discussed.

Currently there are no PDA JVMs capable of supporting JDK 1.5, thus the first

solution was dismissed. Further, the second solution of using a different OR Mapper was

not acceptable due to the existing OR Mapper, Hibernate, being fully incorporated and

functional with the PC based client. The third solution of compiling the Hibernate3.jar

61

files to JDK 1.1 was attempted, but unsuccessful. Thus, the last solution of overcoming

the Hibernate proprietary Set by deep copying was the only viable solution and

implemented into the final prototype.

To deep copy the objects from the Hibernate proprietary Set to a java.util.Set not

only required additional coding, but also added potential for performance limitations.

The additional coding required was added to deep copy each object from the Hibernate

Set. The deep copy operation entailed creating objects of the same type as those in the

Hibernate Set, copying the contents of those objects into the new objects, and saving the

new objects into a java.util.Set. The deep copy process removed the requirement for the

Hibernate3.jar file to exist on the PCRClient device(s) and eliminated the

org.hibernate.collection.PersistentSet error. Furthermore, deep copying was successful in

overcoming the Hibernate Set problem, however; it increased the amount of data

processing in the application logic layer. The increased processing stems from the need

to deep copy each and every Hibernate Set that exists in the returning Hibernate query

generated. Deep copying becomes very complex in cases where the Hibernate Set

contains objects that in turn contain additional Hibernate Sets, and so on. The complexity

compounded by the potential for large and complex query results potentially places a

bottleneck on the application logic layer. Although there was a potential bottleneck in

the application logic layer this was the clear solution in overcoming the Hibernate

proprietary Set problem in the proof-of-concept prototype DB application.

62

THIS PAGE INTENTIONALLY LEFT BLANK

63

V. SUMMARY

This chapter concludes the thesis with the general findings on the approaches used

and the analysis of the work done in this thesis. The possible extensions to the thesis are

also presented.

A. GENERAL FINDINGS AND ANALYSIS
The thesis’s main objective was to overcome the conceptual gap between current

software development technologies and the highly engrained Relational Database

Management System (RDBMS) technologies. The additional objective was to support

mobile device access to the DB application. In this section, general findings and analysis

of the work done in this thesis will be presented.

1. OR Mapper
A method of overcoming the conceptual gap between the modern software

development technologies and the RDBMS technologies was required. The chosen

method of overcoming that gap was an Object Relational (OR) Mapper. The OR Mapper

supplies a virtual Object Oriented Database Management System (OODBMS) that lies

between a RDBMS and the rest of the DB application implemented with modern

software development technologies. Specifically, the proof-of-concept prototype DB

application utilized Hibernate as an OR Mapper during implementation because it was

open source and properly supported.

During the implementation phase of this thesis, Hibernate provided sufficient

support and capability for the following two reasons. First, though the learning curve to

use Hibernate is initially steep it was quite powerful and adequate to meet the goals of an

OR Mapper in a military application domain. The learning curve was overcome by

leaning upon the online documentation and publications specific to Hibernate (e.g.

Hibernate in Action). Second, Hibernate is capable of integrating into existing three-tier

DB application architectures and not completely disrupting the pre-existing DB

application software. The overall capabilities of Hibernate enable a modern Object-

Oriented (OO) view of the RDBMS and thus overcome the conceptual gap.

64

2. Portability vs Bottleneck
Though Hibernate was fully capable of providing an OO view of the RDBMS it

did not provide all the capabilities that its’ documentation suggested. Specifically, the

Hibernate documentation suggests that Plain Ordinary Java Objects (POJOs) are returned

from the RDBMS. POJOs were returned in all cases encountered during implementation

except one. The one case that did not return POJOs was the Java Set. As discussed in

Chapter IV, Hibernate uses its own version of the Java Set,

org.hibernate.collection.PersistentSet, which is clearly not a POJO. The use of this

proprietary Java Set required the Hibernate3.jar file to be included on both the software

client and server. The requirement that the Java Archive (JAR) file be included on the

software client leads to portability and bottleneck considerations.

Mobile devices executing the client software necessitated the need to bypass the

JAR file as discussed in Chapter IV. The method chosen to bypass the JAR file for

mobile clients was deep copying the returning objects and converting them to true

POJOs. The deep copy method will most likely degrade the rate of data throughput on

the DB application due to the strong possibility for multiple, large, complex queries.

This performance degredation was an unavoidable penalty incurred during

implementation because it provided for the portability of the client software to mobile

devices. However, to eliminate this problem in the prototype DB application required the

use of the JAR file on the client system which was not practical for mobile devices.

3. Overall Critique of Work
The overall goal of the work presented in this thesis was to provide a means of

overcoming the described conceptual gap and provide for mobile device access to DB

applications in the military. Although the overall goal was achieved in the proof-of-

concept prototype described in Chapter IV there were other alternative approaches to

achieve the same goal. These alternative approaches will be further discussed in

comparison to the implemented prototype DB application.

The prototype DB application incorporated a three-tier software architecture.

While the three-tier software architecture met the requirements for the prototype, it may

not be robust enough for all DB applications in a military environment. Specifically, an

additional tier may have provided a more efficient means to incorporate mobile devices

65

into the DB application. By using an additional tier (fourth tier) the potential

performance degradation previously discussed can be minimized to a more acceptable

level. The additional tier could determine if the software client is capable of utilizing a

Hibernate JAR file, thereby eliminating the deep copy requirement for that client. In the

case that the software client is not capable of utilizing the Hibernate JAR file (mobile

device) the fourth tier performs the work of the deep copy. Thus, the addition of a fourth

tier would improve the overall performance of the DB application when compared to the

three-tier software architecture.

Additionally, the prototype DB application incorporated a full software

application as a means of developing the software client. Though the full software

application approach fully met the requirements of the prototype it presents a limitation

to large scale DB application employment. A full software application is resident on

each remote client requiring the client’s software to be updated and maintained

individually. One solution to bypassing this large scale software maintenance overhead

is to utilize a technology such as a Java Applet. Although, the Java Applet does not

provide the same degree of functionality (discussed in Chapter II) as the full software

application it does not incur this software maintenance overhead.

B. FUTURE WORK
The presented proof-of-concept prototype DB application requires additional

work in order to provide large scale use in today’s military. The future work should

extend the prototype DB application in three specific areas; (1) the Client Software

(GUI), (2) map to an existing military RDBMS, and (3) a generalized prototype DB

application. Each of these areas will be further discussed.

1. Client Software
The client software as presented in Chapter IV is somewhat limited in its

functionality. To become more relevant to modern military applications the client

software should become more robust in both functionality and usability. This increase in

functionality and usability will require at a minimum three explicit improvements to the

client software: (1) more precise queries, (2) a more dynamic GUI, and (3) additional

functions of update, edit, and insertion.

66

First, the client software should provide the ability to define a more detailed and

precise query. This precise querying ability will permit the user to capture the necessary

information from the backend DBMS in a timely and efficient manner. Additionally, the

user should be enabled to further search on the objects returned during the initial and any

subsequent queries. Second, the client software must also provide the user with a more

dynamic GUI for both input and output functions. These GUI improvements may be

accomplished by adding additional features such as top level menus (i.e. File, Edit, Tools,

View, etc.) and additional screens, or states (e.g. an output screen vice the existing output

text field). These additional features will provide an overall increase in system usability.

Lastly, the prototype proof-of-concept DB application is restricted to being read only.

The client software functions must be expanded to allow for updates, edits, and insertions

into the DBMS from the remote client providing more functionality to the user.

Furthermore, each of these improvements to the client software must be implemented

with mobile devices in mind.

2. Map to Existing Military RDBMS
The proof-of-concept DB application presented in Chapter IV maps to a small

scale fictitious RDBMS that modeled a Joint Staff. Future DB applications of the proof-

of-concept should be capable of mapping to a real world military RDBMS yielding a DB

application that is both relevant and realistic. Mapping to an existing military RDBMS

implicitly requires that the DB application take into account mobile device restrictions;

namely, memory, processing power, screen size, etc. These mobile device restrictions in

conjunction with the potential for large query results introduce the necessity for

additional DB application logic; for example, the returning results may need to be filtered

to an appropriate size for a mobile device. Thus, the proof-of-concept DB application

requires additional logic and functionality in order to properly map to an existing military

RDBMS.

3. Generalized Prototype DB Application
All portions of the proof-of-concept DB application are specific to only one

RDBMS representing a Joint Staff. Thus, the overall DB application is not designed for

general use. The DB application should be able to map to more than just one specific

military RDBMS, it should be capable of mapping to all military RDBMSs with little

67

modification to existing software. To achieve a more general DB application, there is a

requirement that the application as a whole be more dynamic. The DB application must

be generalized at two points; the presentation layer and the application logic layer.

The presentation layer should be more loosely coupled to the rest of the DB

application. This requires that the presentation layer software query the rest of the DB

application and configure the GUI appropriately. By dynamically configuring the GUI

the presentation layer is fully capable of presenting the user a graphical representation of

any backend RDBMS. By providing the DB application a loosely coupled presentation

layer the developer is not required to reconfigure the DB application according to a

specific backend RDBMS(s).

In addition to the presentation layer, the application logic layer must also be more

generalized. A more generalized application logic layer requires the capability to first

map to any RDBMS. In turn this requires the OR Mapper to generate objects according

to the schema that is resident in the RDBMS. For example, the OR Mapper should be

capable of connecting to a RDBMS and return the appropriate object structure that relates

to the schema resident in that RDBMS.

68

THIS PAGE INTENTIONALLY LEFT BLANK

69

LIST OF REFERENCES

Ambler, S. W. (2006). Relational databases 101: Looking at the whole picture. Retrieved
July 7, 2006 from
http://www.agiledata.org/essays/relationalDatabases.html#BeyondRelationalDatabas
es

Bertino, E., & Martino, L. (1993). Object-oriented database systems concepts and
architectures. Wokingham, England: Addison-Wesley Publishers Ltd.

Elmasri, R., & Navathe, S. B. (2004). In Suarez-Rivas M., Harutunian K. (Eds.),
Fundamentals of database systems (Fourth ed.). Boston, MA: Pearson Education,
Inc.

Leavitt Communications, I. (2000). Whatever happened to obect-oriented databases?
Retrieved July 5, 2006 from http://www.leavcom.com/db_08_00.htm

Microsoft TechNet. (2005). How to configure web browser compatibility properties in
FrontPage 2002. Retrieved July 12, 2006 from
http://support.microsoft.com/default.aspx?scid=kb;en-us;311341&sd=tech

Ramakrishnan, R., & Gehrke, J. (2003). In Lupash E. (Ed.), Database management
systems (Third ed.). New York, NY: McGraw-Hill Companies, Inc.

Scott, A. W. (2006). The object-relational impedance mismatch. Retrieved July 10, 2006
from http://www.agiledata.org/essays/impedanceMismatch.html

StoneBraker, M., & Moore, D. (1996). In Spatz B. M., Morgan M. B. (Eds.), Object-
relational DBMS the next great wave. San Francisco, CA: Morgan Kaufmann
Publishers, Inc.

70

THIS PAGE INTENTIONALLY LEFT BLANK

71

BIBLIOGRAPHY

Apache Tomcat Corporation. (2005). The apache tomcat 5.5 Servlet/JSP container., 2005
from http://tomcat.apache.org/tomcat-5.5-doc/index.html

Bauer, C., & King, G. (2005). Hibernate in action. Greenwich, CT: Manning
Publications Co.

Bertino, E., & Martino, L. (1993). Object-oriented database systems concepts and
architectures. Wokingham, England: Addison-Wesley Publishers Ltd.

Cattell, R. G. G., Barry, D., Bartels, D., Berler, M., Eastman, J., & Gamerman, S., et al.
(1997). The object database standard ODMG 2.0. San Fransisco, CA: Morgan
Kaufmann Publishers, Inc.

Devarakonda, R. S. Object-relational DBMSs - the road ahead. Retrieved July 15, 2006
from http://www.acm.org/crossroads/xrds7-3/ordbms.html

Gray, P., Kulkarni, K., & Paton, N. (1992). Object-oriented databases A semantic data
model approach. New York, New York: Prentice Hall.

Hibernate. Hibernate - relational persistance for idiomatic java., 2005 from
http://www.hibernate.org/hib_docs/v3/reference/en/html/

Lant, M. (2002). Where to put the business rules. Retrieved July 11, 2006 from
http://www.sphere-data.com/docs/bus_rule.shtml

Larman, C. (2005). Applying UML and patterns an introduction to object-oriented
analysis and design and iterative development (Third ed.). Upper Saddle River, NJ:
Prentice Hall PTR.

Lausen, G., & Vossen, G. (1993). Object-oriented databases concepts and architectures.
Reading, MA: Addison-Wesley Publishing Company Inc.

Obasanjo, D. (2001). An exploration of object oriented database management systems.
Retrieved July 21, 2006 from
http://www.25hoursaday.com/WhyArentYouUsingAnOODBMS.html

PostgreSQL. (2006). PostgreSQL., 2005 from http://www.postgresql.org/

Snyder, M., & O'Connor, T. (2005). Object-relational mapping in java with SimpleORM.
Dr. Dobb's Journal, 379 (December 2005), 34-35-36.

Weiss, S. (2002). Handheld usability. New York: John Wiley & Sons, LTD.

72

THIS PAGE INTENTIONALLY LEFT BLANK

73

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Marine Corps Representative

Naval Postgraduate School
Monterey, California

4. Director, Training and Education, MCCDC, Code C46

Quantico, Virginia

5. Director, Marine Corps Research Center, MCCDC, Code C40RC

Quantico, Virginia

6. Marine Corps Tactical Systems Support Activity (Attn: Operations Officer)

Camp Pendleton, California

